SOFC stack coupled with dry reforming

被引:37
|
作者
Barelli, L. [1 ]
Bidini, G. [1 ]
Cinti, G. [1 ]
Gallorini, F. [2 ]
Poeniz, M. [3 ]
机构
[1] Univ Perugia, Dept Engn, Via G Duranti 1-A4, I-06125 Perugia, Italy
[2] Univ Naples Federico II, Dept Engn, Centro Direzionale Isola c4, I-80143 Naples, Italy
[3] EBZ GmbH, Ravensburg, Germany
关键词
Dry reforming; SOFC; Stack Cogeneration heat and power (CHP); Experimental; OXIDE FUEL-CELLS; HYDROGEN-PRODUCTION; CARBON-MONOXIDE; SE-SR; METHANE; PERFORMANCE; ANODES; SYNGAS; SYSTEM; STABILITY;
D O I
10.1016/j.apenergy.2016.08.167
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The study proposes an innovative CHP system based on the coupling of carbon dioxide dry reforming (CDR) and solid oxide fuel cell (SOFC) technology. To supply CO2 at the CDR unit, increasing at the same time the overall utilization factor, SOFC anode off-gases are recycled for fuel reforming. In the CDR unit, in fact, the CO2 in the anodic exhausts reacts with feeding low carbon fuels (in this case natural gas) producing hydrogen and carbon monoxide for the SOFC feeding, thus allowing an internal CO2 reuse. In particular, the SOFC, characterized by high operating temperatures and significant recoverable heat, guarantees suitable temperature of the CDR process, highly endothermic. Moreover, compared to traditional CDR applications, lower temperatures are acceptable because SOFC tolerates feeding gas containing limited amounts of CO and CH4. According to this concept, the SOFC stack can be conveniently fed by a dry reformer reactor. The present study addresses the experimental characterization of SOFC short-stacks performance, in terms of produced power and thermal behavior, when fed by different fuel mixtures produced through dry reforming. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:498 / 507
页数:10
相关论文
共 50 条
  • [21] Diffusion-Related SOFC Stack Degradation
    Menzler, Norbert H.
    Beez, Alexander
    Gruenwald, Nikolas
    Sebold, Doris
    Fang, Qingping
    Vassen, Robert
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 2223 - 2230
  • [22] A Three Dimensional Electrical Model of SOFC Stack
    Le Ny, M.
    Chadebec, O.
    Cauffet, G.
    Dedulle, J. M.
    Bultel, Y.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 903 - 912
  • [23] FLOW DISTRIBUTION IN THE EXTERNAL MANIFOLD OF SOFC STACK
    Qu, Zuopeng
    Aravind, P. V.
    Verkooijen, Adrian
    Dekker, Nico
    ES2008: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY - 2008, VOL 1, 2009, : 569 - 576
  • [24] SOFC Stack and System Development at Forschungszentrum Julich
    Blum, L.
    Batfalsky, P.
    Fang, Q.
    de Haart, L. G. J.
    Malzbender, J.
    Margaritis, N.
    Menzler, N. H.
    Peters, Ro.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) : F1199 - F1205
  • [25] Frictional forces in an SOFC stack with sliding seals
    Yamazaki, T
    Oishi, N
    Namikawa, T
    Yamazaki, Y
    DENKI KAGAKU, 1996, 64 (06): : 634 - 637
  • [26] Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series
    Yu, Rong
    Guan, Wanbing
    Zhou, Xiao-Dong
    JOM, 2017, 69 (02) : 247 - 253
  • [27] Durability of anode supported Solid Oxides Fuel Cells (SOFC) under direct dry-reforming of methane
    Lanzini, A.
    Leone, P.
    Guerra, C.
    Smeacetto, F.
    Brandon, N. P.
    Santarelli, M.
    CHEMICAL ENGINEERING JOURNAL, 2013, 220 : 254 - 263
  • [28] Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series
    Rong Yu
    Wanbing Guan
    Xiao-Dong Zhou
    JOM, 2017, 69 : 247 - 253
  • [29] SOFC Stack Model for Integration Into a Hybrid System: Stack Response to Control Variables
    Whiston, Michael M.
    Bilec, Melissa M.
    Schaefer, Laura A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2015, 12 (03):
  • [30] Non-reforming SOFC with high efficiency
    Yamaji, K
    Horita, T
    Sakai, N
    Negishi, H
    Yokokawa, H
    SOLID OXIDE FUEL CELLS (SOFC VI), 1999, 99 (19): : 1027 - 1036