Functional Data Analysis of Dynamic PET Data

被引:6
|
作者
Chen, Yakuan [1 ]
Goldsmith, Jeff [2 ]
Ogden, R. Todd [2 ]
机构
[1] AT&T Serv Inc, 200 South Laurel Ave, Middletown, NJ 07080 USA
[2] Columbia Univ, Mailman Sch Publ Hlth, New York, NY USA
关键词
Bootstrap; Constrained estimation; Function-on-scalar regression; Nonparametric; Splines; POSITRON-EMISSION-TOMOGRAPHY; SEROTONIN TRANSPORTER BINDING; IN-VIVO QUANTIFICATION; PARAMETERS; MODELS; C-11-DASB; HUMANS; BRAIN;
D O I
10.1080/01621459.2018.1497495
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One application of positron emission tomography (PET), a nuclear imaging technique, in neuroscience involves in vivo estimation of the density of various proteins (often, neuroreceptors) in the brain. PET scanning begins with the injection of a radiolabeled tracer that binds preferentially to the target protein; tracer molecules are then continuously delivered to the brain via the bloodstream. By detecting the radioactive decay of the tracer over time, dynamic PET data are constructed to reflect the concentration of the target protein in the brain at each time. The fundamental problem in the analysis of dynamic PET data involves estimating the impulse response function (IRF), which is necessary for describing the binding behavior of the injected radiotracer. Virtually all existing methods have three common aspects: summarizing the entire IRF with a single scalar measure; modeling each subject separately; and the imposition of parametric restrictions on the IRF. In contrast, we propose a functional data analytic approach that regards each subject's IRF as the basic analysis unit, models multiple subjects simultaneously, and estimates the IRF nonparametrically. We pose our model as a linear mixed effect model in which population level fixed effects and subject-specific random effects are expanded using a B-spline basis. Shrinkage and roughness penalties are incorporated in the model to enforce identifiability and smoothness of the estimated curves, respectively, while monotonicity and nonnegativity constraints impose biological information on estimates. We illustrate this approach by applying it to clinical PET data with subjects belonging to three diagnosic groups. We explore differences among groups by means of pointwise confidence intervals of the estimated mean curves based on bootstrap samples. Supplementary materials for this article are available online.
引用
收藏
页码:595 / 609
页数:15
相关论文
共 50 条
  • [11] Lossless compression of dynamic PET data
    Asma, E
    Shattuck, DW
    Leahy, RM
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (01) : 9 - 16
  • [12] MIXTURE MODELING FOR DYNAMIC PET DATA
    Jiang, Huiping
    Ogden, R. Todd
    [J]. STATISTICA SINICA, 2008, 18 (04) : 1341 - 1356
  • [13] PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging
    Shidahara, Miho
    Ikoma, Yoko
    Kershaw, Jeff
    Kimura, Yuichi
    Naganawa, Mika
    Watabe, Hiroshi
    [J]. ANNALS OF NUCLEAR MEDICINE, 2007, 21 (07) : 379 - 386
  • [14] PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging
    Miho Shidahara
    Yoko Ikoma
    Jeff Kershaw
    Yuichi Kimura
    Mika Naganawa
    Hiroshi Watabe
    [J]. Annals of Nuclear Medicine, 2007, 21 : 379 - 386
  • [15] NiftyPAD - Novel Python Package for Quantitative Analysis of Dynamic PET Data
    Jieqing Jiao
    Fiona Heeman
    Rachael Dixon
    Catriona Wimberley
    Isadora Lopes Alves
    Juan Domingo Gispert
    Adriaan A. Lammertsma
    Bart N. M. van Berckel
    Casper da Costa-Luis
    Pawel Markiewicz
    David M. Cash
    M Jorge Cardoso
    Sebastién Ourselin
    Maqsood Yaqub
    Frederik Barkhof
    [J]. Neuroinformatics, 2023, 21 : 457 - 468
  • [16] Kinetic and Wavelet Analysis of Dynamic FDG PET Data in Human Glioblastoma
    Li, Yinlin
    Leiva-Salinas, Carlos
    Majewski, Stanislaw
    Rehm, Patrice K.
    Schiff, David
    Kundu, Bijoy K.
    [J]. 2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [17] A stochastic algorithm for parameter estimation in compartment analysis of dynamic PET data
    Schuth, G
    Herzog, H
    Schnakenberg, J
    MullerGartner, HW
    [J]. JOURNAL OF NUCLEAR MEDICINE, 1996, 37 (05) : 1003 - 1003
  • [18] DYNAMIC TOPOLOGICAL DATA ANALYSIS OF FUNCTIONAL HUMAN BRAIN NETWORKS
    Chung, Moo k.
    Das, Soumya
    Ombao, Hernando
    [J]. FOUNDATIONS OF DATA SCIENCE, 2024, 6 (01): : 22 - 40
  • [19] Methods and Considerations for Dynamic Analysis of Functional MR Imaging Data
    Chen, Jingyuan E.
    Rubinov, Mikail
    Chang, Catie
    [J]. NEUROIMAGING CLINICS OF NORTH AMERICA, 2017, 27 (04) : 547 - +
  • [20] Principal component analysis for quantitative and robust analysis of dynamic PET/MR imaging data
    Winter, R.
    Leibfarth, S.
    Boeke, S.
    Mena-Romano, P.
    Krueger, M.
    Sezgin, E. Cumhur
    Bowden, G.
    Cotton, J.
    Pichler, B.
    Zips, D.
    Thorwarth, D.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S1113 - S1114