Inverse cascade and magnetic vortices in kinetic Alfven-wave turbulence

被引:7
|
作者
Miloshevich, G. [1 ,2 ]
Laveder, D. [1 ]
Passot, T. [1 ]
Sulem, P. L. [1 ]
机构
[1] Univ Cote Azur, Observ Cote Azur, Lab JL Lagrange, CNRS, Blvd Observ,CS 34229, F-06304 Nice 4, France
[2] Ecole Normale Super Lyon, Lab Phys, 46 Allee Italie, F-69364 Lyon 07, France
关键词
astrophysical plasmas; plasma waves; plasma simulation; PARAMETRIC DECAY INSTABILITY; SOLAR-WIND; MHD TURBULENCE; MAGNETOHYDRODYNAMIC TURBULENCE; ASTROPHYSICAL GYROKINETICS; HELICITY; FLUID; EVOLUTION; SCALES; IDENTIFICATION;
D O I
10.1017/S0022377820001531
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A Hamiltonian two-field gyrofluid model for kinetic Alfven waves (KAWs) in a magnetized electron-proton plasma, retaining ion finite-Larmor-radius corrections and parallel magnetic field fluctuations, is used to study the inverse cascades that develop when turbulence is randomly driven at sub-ion scales. In the directions perpendicular to the ambient field, the dynamics of the cascade turns out to be non-local and the ratio.f of the wave period to the characteristic nonlinear time at the driving scale affects some of its properties. For example, at small values of chi(f), parametric decay instability of the modes driven by the forcing can develop, enhancing for a while inverse transfers. The balanced state, obtained at early time when the two counter-propagating waves are equally driven, also becomes unstable at small chi(f), leading to an inverse cascade. For beta(e) smaller than a few units, the cascade slows down when reaching the low-dispersion spectral range. For higher beta(e), the ratio of the KAWto the Alfven frequencies displays a local minimum. At the corresponding transverse wavenumber, a condensate is formed, and the cascade towards larger scales is then inhibited. Depending on the parameters, a parallel inverse cascade can develop, enhancing the elongation of the ion-scale magnetic vortices that generically form.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] EXPERIMENTS ON ALFVEN-WAVE PROPAGATION
    WILCOX, JM
    DESILVA, AW
    COOPER, WS
    [J]. PHYSICS OF FLUIDS, 1961, 4 (12) : 1506 - 1513
  • [32] NON-LINEAR SURFACE ALFVEN-WAVE WITH MAGNETIC ISLAND
    NOZAKI, K
    TANIUTI, T
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (05) : 1683 - 1688
  • [33] ALFVEN-WAVE STUDIES ON PRETEXT
    VALANJU, PM
    BENGTSON, RD
    BOOTH, WD
    COOK, RW
    EVANS, TE
    MAHAJAN, SM
    OAKES, ME
    ROSS, DW
    SURKO, CM
    [J]. AIP CONFERENCE PROCEEDINGS, 1985, (129) : 1 - 7
  • [34] A REVIEW OF ALFVEN-WAVE HEATING
    BESSON, G
    DECHAMBRIER, A
    COLLINS, GA
    JOYE, B
    LIETTI, A
    LISTER, JB
    MORET, JM
    NOWAK, S
    SIMM, C
    WEISEN, H
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1986, 28 (9A) : 1291 - 1303
  • [35] EXPERIMENTS ON ALFVEN-WAVE PROPAGATION
    WILCOX, JM
    DESILVA, AW
    COOPER, WS
    [J]. NUCLEAR FUSION, 1962, : 1130 - 1130
  • [36] ALFVEN-WAVE EXCITATION IN A CAVITY WITH A TRANSVERSE MAGNETIC-FIELD
    BURES, M
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1983, 38 (06): : 616 - 624
  • [37] THE INFLUENCE OF MULTIPLE ION SPECIES ON ALFVEN-WAVE DISPERSION AND ALFVEN-WAVE PLASMA-HEATING
    ELFIMOV, AG
    TATARONIS, JA
    HERSHKOWITZ, N
    [J]. PHYSICS OF PLASMAS, 1994, 1 (08) : 2637 - 2644
  • [38] A CASE FOR ALFVEN-WAVE HEATING
    CALIFANO, F
    CHIUDERI, C
    EINAUDI, G
    [J]. IAU SYMPOSIA, 1990, (142): : 223 - 229
  • [39] RESONANT ALFVEN-WAVE ABSORPTION IN SOLAR MAGNETIC-FIELDS
    CRAMER, NF
    DONNELLY, IJ
    [J]. PROCEEDINGS ASTRONOMICAL SOCIETY OF AUSTRALIA, 1983, 5 (02): : 196 - 198
  • [40] Is the Alfven-wave propagation effect important for energy decay in homogeneous MHD turbulence?
    Hossain, M
    Gray, PC
    Pontius, DH
    Matthaeus, WH
    Oughton, S
    [J]. SOLAR WIND EIGHT - PROCEEDINGS OF THE EIGHTH INTERNATIONAL SOLAR WIND CONFERENCE, 1996, (382): : 358 - 361