Inverse cascade and magnetic vortices in kinetic Alfven-wave turbulence

被引:7
|
作者
Miloshevich, G. [1 ,2 ]
Laveder, D. [1 ]
Passot, T. [1 ]
Sulem, P. L. [1 ]
机构
[1] Univ Cote Azur, Observ Cote Azur, Lab JL Lagrange, CNRS, Blvd Observ,CS 34229, F-06304 Nice 4, France
[2] Ecole Normale Super Lyon, Lab Phys, 46 Allee Italie, F-69364 Lyon 07, France
关键词
astrophysical plasmas; plasma waves; plasma simulation; PARAMETRIC DECAY INSTABILITY; SOLAR-WIND; MHD TURBULENCE; MAGNETOHYDRODYNAMIC TURBULENCE; ASTROPHYSICAL GYROKINETICS; HELICITY; FLUID; EVOLUTION; SCALES; IDENTIFICATION;
D O I
10.1017/S0022377820001531
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A Hamiltonian two-field gyrofluid model for kinetic Alfven waves (KAWs) in a magnetized electron-proton plasma, retaining ion finite-Larmor-radius corrections and parallel magnetic field fluctuations, is used to study the inverse cascades that develop when turbulence is randomly driven at sub-ion scales. In the directions perpendicular to the ambient field, the dynamics of the cascade turns out to be non-local and the ratio.f of the wave period to the characteristic nonlinear time at the driving scale affects some of its properties. For example, at small values of chi(f), parametric decay instability of the modes driven by the forcing can develop, enhancing for a while inverse transfers. The balanced state, obtained at early time when the two counter-propagating waves are equally driven, also becomes unstable at small chi(f), leading to an inverse cascade. For beta(e) smaller than a few units, the cascade slows down when reaching the low-dispersion spectral range. For higher beta(e), the ratio of the KAWto the Alfven frequencies displays a local minimum. At the corresponding transverse wavenumber, a condensate is formed, and the cascade towards larger scales is then inhibited. Depending on the parameters, a parallel inverse cascade can develop, enhancing the elongation of the ion-scale magnetic vortices that generically form.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Alfven-wave filamentation
    Champeaux, S.
    Passot, T.
    Sulem, P.L.
    [J]. Journal of Plasma Physics, 1997, 58 (pt 4): : 665 - 690
  • [22] ALFVEN-WAVE FLOWMETERS
    KOLMAKOV, IA
    KOROLEV, VN
    [J]. MEASUREMENT TECHNIQUES USSR, 1990, 33 (05): : 482 - 485
  • [23] ALFVEN-WAVE HEATING
    STIX, TH
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 902 - 902
  • [24] ALFVEN-WAVE STUDIES
    OAKES, ME
    LIN, SH
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 902 - 902
  • [25] THEORY OF KINETIC ALFVEN-WAVE HELICITY INJECTION AND CURRENT DRIVE
    CRADDOCK, GG
    DIAMOND, PH
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (08): : 2560 - 2566
  • [26] SPECTRAL PROPERTIES OF THE KINETIC ALFVEN-WAVE IN CYLINDRICAL TOKAMAK GEOMETRY
    VANRIJ, WI
    VAHALA, G
    SIGMAR, DJ
    [J]. PHYSICS OF FLUIDS, 1985, 28 (08) : 2484 - 2493
  • [27] EFFECTS OF ENERGETIC IONS ON KINETIC ALFVEN-WAVE IN A TOKAMAK PLASMA
    DING, N
    HUANG, L
    QIU, XM
    LONG, YX
    [J]. PHYSICS OF PLASMAS, 1995, 2 (05) : 1529 - 1539
  • [28] THEORY OF ENERGETIC ALPHA-PARTICLE-DRIVEN ALFVEN-WAVE TURBULENCE
    GANG, FY
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (10): : 3152 - 3161
  • [29] AURORAL ELECTROMAGNETIC DISTURBANCES AT ALTITUDES OF 900 KM - ALFVEN-WAVE TURBULENCE
    DUBININ, EM
    VOLOKITIN, AS
    ISRAELEVICH, PL
    NIKOLAEVA, NS
    [J]. PLANETARY AND SPACE SCIENCE, 1988, 36 (10) : 949 - 962
  • [30] Kinetic Alfven wave turbulence in space plasmas
    Sharma, R. P.
    Kumar, Sachin
    [J]. PHYSICS LETTERS A, 2010, 374 (34) : 3491 - 3498