Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum

被引:99
|
作者
Ni, Jincheng [1 ,2 ]
Liu, Shunli [1 ]
Hu, Guangwei [2 ]
Hu, Yanlei [1 ]
Lao, Zhaoxin [1 ]
Li, Jiawen [1 ]
Zhang, Qing [2 ]
Wu, Dong [1 ]
Dong, Shaohua [2 ]
Chu, Jiaru [1 ]
Qiu, Cheng-Wei [2 ]
机构
[1] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, CAS Key Lab Mech Behav & Design Mat, Hefei 230027, Anhui, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
基金
中国国家自然科学基金; 国家重点研发计划; 新加坡国家研究基金会;
关键词
orbital angular momentum; planar chirality; helical dichroism; optical activity; chiral nanostructures; NONLINEAR-OPTICAL ACTIVITY; ORIGIN; METAMATERIALS; LIGHT;
D O I
10.1021/acsnano.0c08941
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical activity, demonstrating the chiral light-matter interaction, has attracted tremendous attention in both fundamental theoretical research and advanced applications of high-efficiency enantioselective sensing and next-generation chiroptical spectroscopic techniques. However, conventional chiroptical responses are normally limited in large assemblies of chiral materials by circularly polarized light, exhibiting extremely weak chiroptical signals in a single chiral nanostructure. Here, we demonstrate that an alternative chiral freedom of light-orbital angular momentum-can be utilized for generating strong helical dichroism in single chiral nanostructures. The helical dichroism by monochromatic vortex beams can unambiguously distinguish the intrinsic chirality of nanostructures, in an excellent agreement with theoretical predictions. The single planar-chiral nanostructure can exhibit giant helical dichroism of similar to 20% at the visible wavelength. The vortex-dependent helical dichroism, expanding to single nanostructures and two-dimensional space, has implications for high-efficiency chiroptical detection of planar-chiral nanostructures in chiral optics and nanophotonic systems.
引用
收藏
页码:2893 / 2900
页数:8
相关论文
共 50 条
  • [31] A quantum memory for orbital angular momentum photonic qubits
    Nicolas, A.
    Veissier, L.
    Giner, L.
    Giacobino, E.
    Maxein, D.
    Laurat, J.
    NATURE PHOTONICS, 2014, 8 (03) : 234 - 238
  • [32] A quantum memory for orbital angular momentum photonic qubits
    Nicolas A.
    Veissier L.
    Giner L.
    Giacobino E.
    Maxein D.
    Laurat J.
    Nature Photonics, 2014, 8 (3) : 234 - 238
  • [33] Topological photonic orbital-angular-momentum switch
    Luo, Xi-Wang
    Zhang, Chuanwei
    Guo, Guang-Can
    Zhou, Zheng-Wei
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [34] Chiral crystallization manipulated by orbital angular momentum of light
    Toyoda, Kohei
    Su, Hao-Tse
    Miyamoto, Katsuhiko
    Sugiyama, Teruki
    Omatsu, Takashige
    OPTICA, 2023, 10 (03): : 332 - 338
  • [35] Angular multiplexation of partial helical phase modes in orbital angular momentum holography
    Wang, Feili
    Zhang, Xiangchao
    Xiong, Rui
    Ma, Xinyang
    Jiang, Xiangqian
    OPTICS EXPRESS, 2022, 30 (07) : 11110 - 11119
  • [36] Helical Bragg gratings filter for orbital angular momentum wave
    Ober, Seamus
    Liu, Xiaoli
    Crouse, David
    Tan, Chee-Keong
    AIP ADVANCES, 2020, 10 (02)
  • [37] Kinetic phenomena of helical plasma waves with orbital angular momentum
    Blackman, D. R.
    Nuter, R.
    Korneev, Ph.
    Arefiev, A.
    Tikhonchuk, V. T.
    PHYSICS OF PLASMAS, 2022, 29 (07)
  • [38] Arbitrary superposition of plasmonic orbital angular momentum states with nanostructures
    An, Xing-Qi
    Song, Hong-Sheng
    Zeng, Xiang-Yu
    Gu, Man-Na
    Jiang, Zeng-Shun
    He, Chang-Wei
    Liu, Gui-Yuan
    Cheng, Chuan-Fu
    Zhang, Yu-Qin
    OPTICS LETTERS, 2022, 47 (08) : 2032 - 2035
  • [39] Measuring the orbital angular momentum of a single photon
    Leach, Jonathan
    Padgett, Miles J.
    Barnett, Stephen M.
    Franke-Arnold, Sonja
    Courtial, Johannes
    Physical Review Letters, 2002, 88 (25 I) : 257901 - 257901
  • [40] Measuring the orbital angular momentum of a single photon
    Leach, J
    Padgett, MJ
    Barnett, SM
    Franke-Arnold, S
    Courtial, J
    PHYSICAL REVIEW LETTERS, 2002, 88 (25) : 4