Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum

被引:99
|
作者
Ni, Jincheng [1 ,2 ]
Liu, Shunli [1 ]
Hu, Guangwei [2 ]
Hu, Yanlei [1 ]
Lao, Zhaoxin [1 ]
Li, Jiawen [1 ]
Zhang, Qing [2 ]
Wu, Dong [1 ]
Dong, Shaohua [2 ]
Chu, Jiaru [1 ]
Qiu, Cheng-Wei [2 ]
机构
[1] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, CAS Key Lab Mech Behav & Design Mat, Hefei 230027, Anhui, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
基金
中国国家自然科学基金; 国家重点研发计划; 新加坡国家研究基金会;
关键词
orbital angular momentum; planar chirality; helical dichroism; optical activity; chiral nanostructures; NONLINEAR-OPTICAL ACTIVITY; ORIGIN; METAMATERIALS; LIGHT;
D O I
10.1021/acsnano.0c08941
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical activity, demonstrating the chiral light-matter interaction, has attracted tremendous attention in both fundamental theoretical research and advanced applications of high-efficiency enantioselective sensing and next-generation chiroptical spectroscopic techniques. However, conventional chiroptical responses are normally limited in large assemblies of chiral materials by circularly polarized light, exhibiting extremely weak chiroptical signals in a single chiral nanostructure. Here, we demonstrate that an alternative chiral freedom of light-orbital angular momentum-can be utilized for generating strong helical dichroism in single chiral nanostructures. The helical dichroism by monochromatic vortex beams can unambiguously distinguish the intrinsic chirality of nanostructures, in an excellent agreement with theoretical predictions. The single planar-chiral nanostructure can exhibit giant helical dichroism of similar to 20% at the visible wavelength. The vortex-dependent helical dichroism, expanding to single nanostructures and two-dimensional space, has implications for high-efficiency chiroptical detection of planar-chiral nanostructures in chiral optics and nanophotonic systems.
引用
收藏
页码:2893 / 2900
页数:8
相关论文
共 50 条
  • [21] Orbital angular momentum photonic quantum interface
    Zhi-Yuan Zhou
    Yan Li
    Dong-Sheng Ding
    Wei Zhang
    Shuai Shi
    Bao-Sen Shi
    Guang-Can Guo
    Light: Science & Applications, 2016, 5 : e16019 - e16019
  • [22] Photonic orbital angular momentum with controllable orientation
    Wan, Chenhao
    Chen, Jian
    Chong, Andy
    Zhan, Qiwen
    NATIONAL SCIENCE REVIEW, 2022, 9 (07)
  • [23] Photonic orbital angular momentum with controllable orientation
    Chenhao Wan
    Jian Chen
    Andy Chong
    Qiwen Zhan
    NationalScienceReview, 2022, 9 (07) : 56 - 62
  • [24] Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber
    Xi, X. M.
    Wong, G. K. L.
    Frosz, M. H.
    Babic, F.
    Ahmed, G.
    Jiang, X.
    Euser, T. G.
    Russell, P. St. J.
    OPTICA, 2014, 1 (03): : 165 - 169
  • [25] Single-Particle Dichroism Using Orbital Angular Momentum in a Microwave Plasmonic Resonator
    Zhang, Xuanru
    Cui, Tie Jun
    ACS PHOTONICS, 2020, 7 (12): : 5291 - 5297
  • [26] Formation of orbital angular momentum and focused beams based on chiral double-helical metamaterials
    Sun, Zhichao
    Yan, Mengyao
    Xu, Bijun
    OPTICAL MATERIALS, 2020, 107
  • [27] Orbital angular momentum analysis for giant spin splitting in solids and nanostructures (vol 7, 2017)
    Oh, Sehoon
    Choi, Hyoung Joon
    SCIENTIFIC REPORTS, 2018, 8
  • [28] Orbital angular momentum transfer in helical Mathieu beams
    López-Mariscal, C
    Gutiérrez-Vega, JC
    Milne, G
    Dholakia, K
    OPTICS EXPRESS, 2006, 14 (09): : 4182 - 4187
  • [29] Circular dichroism of cholesteric polymers and the orbital angular momentum of light
    Loeffler, W.
    Broer, D. J.
    Woerdman, J. P.
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [30] Quantum commutation relationship for photonic orbital angular momentum
    Saito, Shinichi
    FRONTIERS IN PHYSICS, 2023, 11