Controller tuning using evolutionary multi-objective optimisation: Current trends and applications

被引:92
|
作者
Reynoso-Meza, Gilberto [1 ]
Blasco, Xavier [1 ]
Sanchis, Javier [1 ]
Martinez, Miguel [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Automat & Informat Ind, Valencia 46022, Spain
关键词
Evolutionary multi-objective optimisation; Multi-objective evolutionary algorithms; Multi-criteria decision making; Multi-objective optimisation design procedure; Controller tuning; PID CONTROLLERS; DIFFERENTIAL EVOLUTION; GENETIC ALGORITHM; DECISION-MAKING; DESIGN OPTIMIZATION; ENGINEERING DESIGN; PREDICTIVE CONTROL; CONTROL-SYSTEMS; FUZZY CONTROL; MODEL;
D O I
10.1016/j.conengprac.2014.03.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Control engineering problems are generally multi-objective problems; meaning that there are several specifications and requirements that must be fulfilled. A traditional approach for calculating a solution with the desired trade-off is to define an optimisation statement. Multi-objective optimisation techniques deal with this problem from a particular perspective and search for a set of potentially preferable solutions; the designer may then analyse the trade-offs among them, and select the best solution according to his/her preferences. In this paper, this design procedure based on evolutionary multiobjective optimisation (EMO) is presented and significant applications on controller tuning are discussed. Throughout this paper it is noticeable that EMO research has been developing towards different optimisation statements, but these statements are not commonly used in controller tuning. Gaps between EMO research and EMO applications on controller tuning are therefore detected and suggested as potential trends for research. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:58 / 73
页数:16
相关论文
共 50 条
  • [1] Evolutionary multi-objective optimisation with preferences for multivariable PI controller tuning
    Reynoso-Meza, Gilberto
    Sanchis, Javier
    Blasco, Xavier
    Freire, Roberto Z.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 51 : 120 - 133
  • [2] PID controller tuning by an interactive multi-objective optimisation method
    Wang, FS
    Yeh, CL
    Wu, YC
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 1996, 18 (04) : 183 - 192
  • [3] PID controller tuning for unstable processes using a multi-objective optimisation design procedure
    Reynoso-Meza, G.
    Carrillo-Ahumada, J.
    Boada, Y.
    Pico, J.
    [J]. IFAC PAPERSONLINE, 2016, 49 (07): : 284 - 289
  • [4] Multi-objective Robust PID Controller Tuning using Multi-objective Differential Evolution
    Zhao, S-Z.
    Qu, B-Y
    Suganthan, P. N.
    Iruthayarajan, M. Willjuice
    Baskar, S.
    [J]. 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2010), 2010, : 2398 - 2403
  • [5] Multi-Objective Evolutionary Beer Optimisation
    al-Rifaie, Mohammad Majid
    Cavazza, Marc
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 683 - 686
  • [6] Evolutionary multi-objective optimisation: a survey
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2015, 7 (01) : 1 - 25
  • [7] Multi-objective pump scheduling optimisation using evolutionary strategies
    Barán, B
    von Lücken, C
    Sotelo, A
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (01) : 39 - 47
  • [8] Multi-objective optimisation of cancer chemotherapy using evolutionary algorithms
    Petrovski, A
    McCall, J
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 531 - 545
  • [9] Robust design optimisation using multi-objective evolutionary algorithms
    Lee, D. S.
    Gonzalez, L. F.
    Periaux, J.
    Srinivas, K.
    [J]. COMPUTERS & FLUIDS, 2008, 37 (05) : 565 - 583
  • [10] RSVP performance evaluation using multi-objective evolutionary optimisation
    Komolafe, O
    Sventek, J
    [J]. IEEE Infocom 2005: The Conference on Computer Communications, Vols 1-4, Proceedings, 2005, : 2447 - 2457