Robust design optimisation using multi-objective evolutionary algorithms

被引:37
|
作者
Lee, D. S. [1 ]
Gonzalez, L. F. [3 ]
Periaux, J. [2 ]
Srinivas, K. [1 ]
机构
[1] Univ Sydney, AMME, Sydney, NSW 2006, Australia
[2] UPC, CIMNE, Barcelona, Spain
[3] Queensland Univ Technol, Brisbane, Qld 4001, Australia
关键词
D O I
10.1016/j.compfluid.2007.07.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a new robust design method is investigated with a hierarchical asynchronous parallel multi-objective evolutionary algorithms in an optimisation framework environment to solve single and multi-point design optimisation problems in aerodynamics. The single design techniques produce solutions that perform well for the selected design point but have poor off-design performance. Here, it is shown how the approach can provide robust solutions using game theory in the sense that they are less sensitive to little changes of input parameters. Starting from a statistical definition of stability, the method captures, simultaneously Pareto non-dominated solutions with respect to performance and stability criteria, offering alternative choices to the designer. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:565 / 583
页数:19
相关论文
共 50 条
  • [1] Multi-objective optimisation of cancer chemotherapy using evolutionary algorithms
    Petrovski, A
    McCall, J
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 531 - 545
  • [2] Aesthetic Design Using Multi-Objective Evolutionary Algorithms
    Gaspar-Cunha, Antonio
    Loyens, Dirk
    van Hattum, Ferrie
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 374 - +
  • [3] A review of multi-objective optimisation and decision making using evolutionary algorithms
    Ojha, Muneendra
    Singh, Krishna Pratap
    Chakraborty, Pavan
    Verma, Shekhar
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2019, 14 (02) : 69 - 84
  • [4] Multilayered composite structure design optimisation using distributed/parallel multi-objective evolutionary algorithms
    Lee, D. S.
    Morillo, C.
    Bugeda, G.
    Oller, S.
    Onate, E.
    [J]. COMPOSITE STRUCTURES, 2012, 94 (03) : 1087 - 1096
  • [5] Intelligent zoning design using multi-objective evolutionary algorithms
    Radtke, PVW
    Oliveira, LS
    Sabourin, R
    Wong, T
    [J]. SEVENTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2003, : 824 - 828
  • [6] Multi-objective optimisation using evolutionary algorithms:: its application to HPLC separations
    Cela, R
    Martínez, JA
    González-Barreiro, C
    Lores, M
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2003, 69 (1-2) : 137 - 156
  • [7] Evolutionary algorithms for multi-objective design optimization
    Sefrioui, M
    Whitney, E
    Periaux, J
    Srinivas, K
    [J]. COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 224 - 237
  • [8] On the Integrity of Performance Comparison for Evolutionary Multi-objective Optimisation Algorithms
    Wilson, Kevin
    Rostami, Shahin
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI), 2019, 840 : 3 - 15
  • [9] Inverse multi-objective robust evolutionary design
    Lim D.
    Ong Y.-S.
    Jin Y.
    Sendhoff B.
    Lee B.S.
    [J]. Genetic Programming and Evolvable Machines, 2006, 7 (04) : 383 - 404
  • [10] Design space exploration with evolutionary multi-objective optimisation
    Holzer, M.
    Kneff, B.
    Rupp, M.
    [J]. 2007 INTERNATIONAL SYMPOSIUM ON INDUSTRIAL EMBEDDED SYSTEMS, 2007, : 126 - 133