A generalized method for constructing subquadratic complexity GF(2k) multipliers

被引:43
|
作者
Sunar, B [1 ]
机构
[1] Worcester Polytech Inst, Worcester, MA 01609 USA
基金
美国国家科学基金会;
关键词
bit-parallel multipliers; finite fields; Winograd convolution;
D O I
10.1109/TC.2004.52
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a generalized method for constructing subquadratic complexity multipliers for even characteristic field extensions. The construction is obtained by recursively extending short convolution algorithms and nesting them. To obtain the short convolution algorithms, the Winograd short convolution algorithm is reintroduced and analyzed in the context of polynomial multiplication. We present a recursive construction technique that extends any d point multiplier into an n = d(k) point multiplier with area that is subquadratic and delay that is logarithmic in the bit-length n. We present a thorough analysis that establishes the exact space and time complexities of these multipliers. Using the recursive construction method, we obtain six new constructions, among which one turns out to be identical to the Karatsuba multiplier. All six algorithms have subquadratic space complexities and two of the algorithms have significantly better time complexities than the Karatsuba algorithm.
引用
收藏
页码:1097 / 1105
页数:9
相关论文
共 50 条
  • [21] Montgomery residue representation fault-tolerant computation in GF(2k)
    Medos, Silvana
    Boztas, Serdar
    [J]. INFORMATION SECURITY AND PRIVACY, 2008, 5107 : 419 - 432
  • [22] On Montgomery-like representations for elliptic curves over GF(2k)
    Stam, M
    [J]. PUBLIC KEY CRYPTOGRAPHY - PKC 2003, PROCEEDINGS, 2003, 2567 : 240 - 253
  • [23] Two dimensional word with 2k maximal pattern complexity
    Kamae, T
    Xue, YM
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2004, 41 (02) : 257 - 265
  • [24] Parallel montgomery multiplication in GF(2k) using trinomial residue arithmetic
    Bajard, JC
    Imbert, L
    Jullien, GA
    [J]. 17TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2005, : 164 - 171
  • [25] High performance elliptic curve GF(2k) cryptoprocessor architecture for multimedia
    Gutub, AAA
    Ibrahim, MK
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL III, PROCEEDINGS, 2003, : 81 - 84
  • [26] Low complexity sequential normal basis multipliers over GF(2m)
    Reyhani-Masoleh, A
    Hasan, MA
    [J]. 16TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2003, : 188 - 195
  • [27] Subquadratic Space Complexity Multiplier for GF(2n) Using Type 4 Gaussian Normal Bases
    Park, Sun-Mi
    Hong, Dowon
    Seo, Changho
    [J]. ETRI JOURNAL, 2013, 35 (03) : 523 - 529
  • [28] O(1/t) complexity analysis of the generalized alternating direction method of multipliers
    Cai, Xingju
    Han, Deren
    [J]. SCIENCE CHINA-MATHEMATICS, 2019, 62 (04) : 795 - 808
  • [29] O(1/t) complexity analysis of the generalized alternating direction method of multipliers
    Xingju Cai
    Deren Han
    [J]. Science China Mathematics, 2019, 62 : 795 - 808
  • [30] O(1/t) complexity analysis of the generalized alternating direction method of multipliers
    Xingju Cai
    Deren Han
    [J]. Science China Mathematics, 2019, 62 (04) : 795 - 808