Subquadratic Space Complexity Multiplier for GF(2n) Using Type 4 Gaussian Normal Bases

被引:7
|
作者
Park, Sun-Mi [1 ]
Hong, Dowon [1 ]
Seo, Changho [1 ]
机构
[1] Kongju Natl Univ, Dept Appl Math, Gongju, South Korea
基金
新加坡国家研究基金会;
关键词
Finite field arithmetic; subquadratic space complexity multiplier; normal basis; Gaussian normal basis;
D O I
10.4218/etrij.13.0112.0596
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Subquadratic space complexity multipliers for optimal normal bases (ONBs) have been proposed for practical applications. However, for the Gaussian normal basis (GNB) of type t > 2 as well as the normal basis (NB), there is no known subquadratic space complexity multiplier. In this paper, we propose the first subquadratic space complexity multipliers for the type 4 GNB. The idea is based on the fact that the finite field GF(2(n)) with the type 4 GNB can be embedded into fields with an ONB.
引用
收藏
页码:523 / 529
页数:7
相关论文
共 50 条
  • [1] Subquadratic Complexity Gaussian Normal Basis Multiplier over GF(2m) Using Addition of HMVP and TMVP
    Yang, Chun-Sheng
    Pan, Jeng-Shyang
    Lee, Chiou-Yng
    [J]. JOURNAL OF INTERNET TECHNOLOGY, 2017, 18 (07): : 1597 - 1603
  • [2] Subquadratic complexity gaussian normal basis multiplier with subquadratic and quadratic computation approach
    Chiou, Che Wun
    Lee, Chiou-Yng
    Sun, Yuh-Sien
    Lee, Cheng-Min
    Chen, Shih Shng
    Lin, Jim-Min
    Chuang, Tai-Pao
    [J]. Journal of Computers (Taiwan), 2020, 31 (03): : 11 - 26
  • [3] Low complexity bit-parallel normal bases multipliers for GF(2n)
    Fan, H
    Dai, Y
    [J]. ELECTRONICS LETTERS, 2004, 40 (01) : 24 - 26
  • [4] Multiplier architectures for GF(p) and GF(2n)
    Savas, E
    Tenca, AF
    Çiftçibasi, ME
    Koç, ÇK
    [J]. IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2004, 151 (02): : 147 - 160
  • [5] New Bit Parallel Multiplier With Low Space Complexity for All Irreducible Trinomials Over GF(2n)
    Cho, Young In
    Chang, Nam Su
    Kim, Chang Han
    Park, Young-Ho
    Hong, Seokhie
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2012, 20 (10) : 1903 - 1908
  • [6] Subquadratic space complexity Gaussian normal basis multipliers over GF(2m) based on Dickson-Karatsuba decomposition
    Pan, Jeng-Shyang
    Lee, Chiou-Yng
    Li, Yao
    [J]. IET CIRCUITS DEVICES & SYSTEMS, 2015, 9 (05) : 336 - 342
  • [7] Low-complexity Gaussian normal basis multiplier over GF(2m)
    Chiou, C. W.
    Chang, H. W.
    Liang, W. -Y.
    Lee, C. -Y.
    Lin, J. -M.
    Yeh, Y. -C.
    [J]. IET INFORMATION SECURITY, 2012, 6 (04) : 310 - 317
  • [8] Gaussian normal basis multiplier over GF(2m) using hybrid subquadratic-and-quadratic TMVP approach for elliptic curve cryptography
    Chiou, Che Wun
    Sun, Yuh-Sien
    Lee, Cheng-Min
    Lin, Jim-Min
    Chuang, Tai-Pao
    Lee, Chiou-Yng
    [J]. IET CIRCUITS DEVICES & SYSTEMS, 2017, 11 (06) : 579 - 588
  • [9] Subquadratic Space Complexity Binary Field Multiplier Using Double Polynomial Representation
    Bajard, Jean-Claude
    Negre, Christophe
    Plantard, Thomas
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2010, 59 (12) : 1585 - 1597
  • [10] Subquadratic space complexity multiplier for a class of binary fields using Toeplitz matrix approach
    Hasan, M. A.
    Negre, C.
    [J]. ARITH: 2009 19TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER ARITHMETIC, 2009, : 67 - +