Subquadratic Space Complexity Multiplier for GF(2n) Using Type 4 Gaussian Normal Bases

被引:7
|
作者
Park, Sun-Mi [1 ]
Hong, Dowon [1 ]
Seo, Changho [1 ]
机构
[1] Kongju Natl Univ, Dept Appl Math, Gongju, South Korea
基金
新加坡国家研究基金会;
关键词
Finite field arithmetic; subquadratic space complexity multiplier; normal basis; Gaussian normal basis;
D O I
10.4218/etrij.13.0112.0596
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Subquadratic space complexity multipliers for optimal normal bases (ONBs) have been proposed for practical applications. However, for the Gaussian normal basis (GNB) of type t > 2 as well as the normal basis (NB), there is no known subquadratic space complexity multiplier. In this paper, we propose the first subquadratic space complexity multipliers for the type 4 GNB. The idea is based on the fact that the finite field GF(2(n)) with the type 4 GNB can be embedded into fields with an ONB.
引用
收藏
页码:523 / 529
页数:7
相关论文
共 50 条
  • [21] Key function of normal basis multipliers in GF(2n)
    Fan, H
    Dai, YQ
    [J]. ELECTRONICS LETTERS, 2002, 38 (23) : 1431 - 1432
  • [22] Low-Complexity Multiplier Architectures for Single and Hybrid-Double Multiplications in Gaussian Normal Bases
    Azarderakhsh, Reza
    Reyhani-Masoleh, Arash
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2013, 62 (04) : 744 - 757
  • [23] Optimized VHDL-based Karatsuba Polynomial Multiplier Generator for GF(2n)
    Santriaji, Muhammad Husni
    Sasongko, Arif
    [J]. 2015 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2015, : 274 - 278
  • [24] A low complexity and a low latency bit parallel systolic multiplier over GF(2m) using an optimal normal basis of type
    Kwon, S
    [J]. 16TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2003, : 196 - 202
  • [25] Subquadratic Polynomial Multiplication over GF(2m) Using Trinomial Bases and Chinese Remaindering
    Schost, Eric
    Hariri, Arash
    [J]. SELECTED AREAS IN CRYPTOGRAPHY, 2009, 5381 : 361 - +
  • [26] Fault-tolerant Gaussian normal basis multiplier over GF(2m)
    Chuang, T. -P.
    Chiou, C. Wun
    Lin, S. -S.
    Lee, C. -Y.
    [J]. IET INFORMATION SECURITY, 2012, 6 (03) : 157 - 170
  • [27] Self-Checking Gaussian Normal Basis Multiplier over GF(2m) Using Multiplexer Approach
    Chiou, Che Wun
    Lin, Jim-Min
    Chang, Hung Wei
    Liang, Wen-Yew
    Wang, Jenq-Haur
    Yeh, Yun-Chi
    [J]. 2012 SIXTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING (ICGEC), 2012, : 505 - 508
  • [28] A (4:2) adder for unified GF (p) and GF (2n) Galois Field multipliers
    Au, LS
    Burgess, N
    [J]. THIRTY-SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS - CONFERENCE RECORD, VOLS 1 AND 2, CONFERENCE RECORD, 2002, : 1619 - 1623
  • [29] Palindromic-like representation for Gaussian normal basis multiplier over GF(2m) with odd type t
    Chiou, C. W.
    Chuang, T. -P.
    Lin, S. -S.
    Lee, C. -Y.
    Lin, J. -M.
    Yeh, Y. -C.
    [J]. IET INFORMATION SECURITY, 2012, 6 (04) : 318 - 323
  • [30] Design of an S-ECIES Cryptoprocessor Using Gaussian Normal Bases Over GF(2m)
    Realpe-Munoz, Paulo
    Velasco-Medina, Jaime
    Adolfo-David, Guillermo
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2021, 29 (04) : 657 - 666