Pointwise estimates to the modified Riesz potential

被引:2
|
作者
Harjulehto, Petteri [1 ]
Hurri-Syrjanen, Ritva [2 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
关键词
IRREGULAR DOMAINS; ORLICZ SPACES; INEQUALITY; EXTENSION; OPERATORS;
D O I
10.1007/s00229-017-0983-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a smooth domain a function can be estimated pointwise by the classical Riesz potential of its gradient. Combining this estimate with the boundedness of the classical Riesz potential yields the optimal Sobolev-Poincar, inequality. We show that this method gives a Sobolev-Poincar, inequality also for irregular domains whenever we use the modified Riesz potential which arise naturally from the geometry of the domain. The exponent of the Sobolev-Poincar, inequality depends on the domain. The Sobolev-Poincar, inequality given by this approach is not sharp for irregular domains, although the embedding for the modified Riesz potential is optimal. In order to obtain the results we prove a new pointwise estimate for the Hardy-Littlewood maximal operator.
引用
收藏
页码:521 / 543
页数:23
相关论文
共 50 条
  • [41] Pointwise error estimates, superconvergence and extrapolation
    Schatz, AH
    [J]. FINITE ELEMENT METHODS: SUPERCONVERGENCE, POST-PROCESSING, AND A POSTERIORI ESTIMATES, 1998, 196 : 237 - 247
  • [42] Pointwise estimates for Lagrange interpolation polynomials
    T. F. Xie
    [J]. Acta Mathematica Hungarica, 2007, 117 : 77 - 89
  • [43] Sharp Pointwise Estimates for Fock Spaces
    Friedrich Haslinger
    David Kalaj
    Djordjije Vujadinović
    [J]. Computational Methods and Function Theory, 2021, 21 : 343 - 359
  • [44] NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF THE RIESZ POTENTIAL IN MODIFIED MORREY SPACES
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Zeren, Yusuf
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (04): : 491 - 506
  • [45] Exact constants for pointwise adaptive estimation under the Riesz transform
    Klemelä, J
    Tsybakov, AB
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (03) : 441 - 467
  • [46] Pointwise error estimates in localization microscopy
    Martin Lindén
    Vladimir Ćurić
    Elias Amselem
    Johan Elf
    [J]. Nature Communications, 8
  • [47] POINTWISE ESTIMATES FOR GΓ-FUNCTIONS AND APPLICATIONS
    Fiorenza, Alberto
    Formica, Maria Rosaria
    Rakotoson, Jean Michel
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (11-12) : 809 - 824
  • [48] On pointwise estimates involving sparse operators
    Lerner, Andrei K.
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2016, 22 : 341 - 349
  • [49] POINTWISE ESTIMATES AND QUASILINEAR PARABOLIC EQUATIONS
    TRUDINGE.NS
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1968, 21 (03) : 205 - &
  • [50] Pointwise estimates of eigenfunctions for Schrodinger operators
    Bazley, N. W.
    Fankhauser, H. R.
    [J]. CHEMICAL PHYSICS LETTERS, 1970, 7 (01) : 121 - 122