Sharp Pointwise Estimates for Fock Spaces

被引:0
|
作者
Friedrich Haslinger
David Kalaj
Djordjije Vujadinović
机构
[1] University of Vienna,Faculty of Mathematics
[2] University of Montenegro,Faculty of Natural Sciences and Mathematics
关键词
Fock space; Pointwise estimates; Primary 30D15; Secondary 46E15;
D O I
暂无
中图分类号
学科分类号
摘要
Let 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<\infty $$\end{document}, and α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}. Let Fαp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\alpha }^{p}$$\end{document} denote the Fock space. We establish some sharp pointwise estimates for the derivatives of the functions belonging to Fαp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\alpha }^{p}$$\end{document}. Moreover for the Hilbert case p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} we establish some more specific pointwise sharp estimates. We also consider the differential operator between Fαp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\alpha }^{p}$$\end{document} and Fβp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\beta }^{p}$$\end{document} for β>α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >\alpha $$\end{document} and its adjoint.
引用
收藏
页码:343 / 359
页数:16
相关论文
共 50 条
  • [1] Sharp Pointwise Estimates for Fock Spaces
    Haslinger, Friedrich
    Kalaj, David
    Vujadinovic, Djordjije
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2021, 21 (02) : 343 - 359
  • [2] Sharp pointwise estimates on heat kernels
    Sikora, A
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1996, 47 (187): : 371 - 382
  • [3] SHARP POINTWISE ESTIMATES FOR FUNCTIONS IN THE SOBOLEV SPACES H-s(R-n)
    Schutz, Lineia
    Ziebell, Juliana S.
    Zingano, Janaina P.
    Zingano, Paulo R.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2015, 16 (01): : 45 - 53
  • [4] Pointwise Estimates for the Bergman Kernel of the Weighted Fock Space
    Jordi Marzo
    Joaquim Ortega-Cerdà
    [J]. Journal of Geometric Analysis, 2009, 19 : 890 - 910
  • [5] Pointwise Estimates for the Bergman Kernel of the Weighted Fock Space
    Marzo, Jordi
    Ortega-Cerda, Joaquim
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (04) : 890 - 910
  • [6] Sharp pointwise gradient estimates for Riesz potentials with a bounded density
    Tkachev, Vladimir G.
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 711 - 730
  • [7] Sharp pointwise gradient estimates for Riesz potentials with a bounded density
    Vladimir G. Tkachev
    [J]. Analysis and Mathematical Physics, 2018, 8 : 711 - 730
  • [8] over bar SHARP POINTWISE AND UNIFORM ESTIMATES FOR partial differential
    Dong, Robert xin
    LI, Song -y ing
    Treuer, Johnn.
    [J]. ANALYSIS & PDE, 2023, 16 (02): : 407 - 431
  • [9] Sharp pointwise estimates for directional derivatives of harmonic functions in a multidimensional ball
    Kresin G.
    Maz'ya V.
    [J]. Journal of Mathematical Sciences, 2010, 169 (2) : 167 - 187
  • [10] Sharp pointwise estimates for weighted critical p-Laplace equations
    Shakerian, Shaya
    Vetois, Jerome
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 206