Two-dimensional g-C3N4/TiO2 nanocomposites as vertical Z-scheme heterojunction for improved photocatalytic water disinfection

被引:100
|
作者
Liu, Yue [1 ]
Zeng, Xiangkang [2 ]
Hu, Xiaoyi [1 ]
Hu, Jian [1 ]
Wang, Zhouyou [1 ]
Yin, Yichun [1 ]
Sun, Chenghua [3 ]
Zhang, Xiwang [1 ]
机构
[1] Monash Univ, Dept Chem Engn, Clayton, Vic 3168, Australia
[2] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[3] Swinburne Univ Technol, Fac Sci Engn & Technol, Dept Chem & Biotechnol, Hawthorn, Vic 3122, Australia
关键词
Photocatalysis Water disinfection; Two-dimensional materials; Vertical heterojunction; Z-scheme heterojunction; REDUCED GRAPHENE OXIDE; 001 ACTIVE FACETS; VISIBLE-LIGHT; BACTERIAL INACTIVATION; TIO2; NANOSHEETS; CARBON NITRIDE; GENERATION; CONTACT; UV; CONSTRUCTION;
D O I
10.1016/j.cattod.2018.11.053
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Developing highly active photocatalysts towards effective microorganism inactivation is a green and energy-smart strategy in response to the growing demands to water quality under the background of the water crisis. Here, a vertical face-to-face heterojunction is fabricated by horizontally assembling TiO2 nanosheets with {001} facets exposed on graphitic carbon nitride (g-C3N4) sheets through a facile hydrothermal driving coupling. The vertical heterojunction could almost completely disinfect 103 CFU/mL E. coli within 30 min under solar light, which is more efficient than the physically mixed composite and pure g-C3N4 and TiO2. The two-dimensional (2D) morphology provides ample surface area in forming the vertical heterojunction and enables intimate contact which is advantageous to charge transfer between g-C3N4 and TiO2. A Z-scheme charge transportation mechanism is confirmed through band structure analysis and reactive species (RSs) probing and trapping experiments. In comparison with physically mixed composite and the single-phase counterparts, the nanocomposite based on a Z-scheme electron transfer mode effectively prompts charge pair dissociation and subsequently encourages bacterial inactivation by boosting the generation of RSs. The constructing vertical Z-scheme heterojunction highlights the potential of 2D nanomaterials for accelerated water sterilization.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 50 条
  • [41] Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system for enhanced photocatalytic redox performance
    Kong, Lina
    Zhang, Xintong
    Wang, Changhua
    Xu, Jianping
    Du, Xiwen
    Li, Lan
    APPLIED SURFACE SCIENCE, 2018, 448 : 288 - 296
  • [42] Novel g-C3N4/h′ZnTiO3 -a′TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity
    Li, Xibao
    Xiong, Jie
    Huang, Juntong
    Feng, Zhijun
    Luo, Junming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 774 : 768 - 778
  • [43] Photocatalytic Activity of TiO2/g-C3N4 Nanocomposites for Removal of Monochlorophenols from Water
    Kobkeatthawin, Thawanrat
    Chaveanghong, Suwilai
    Trakulmututa, Jirawat
    Amornsakchai, Taweechai
    Kajitvichyanukul, Puangrat
    Smith, Siwaporn Meejoo
    NANOMATERIALS, 2022, 12 (16)
  • [44] Surface defect-rich g-C3N4/TiO2 Z-scheme heterojunction for efficient photocatalytic antibiotic removal: rational regulation of free radicals and photocatalytic mechanism
    Ning, Pei
    Chen, Huayu
    Pan, Jianhui
    Liang, Junhui
    Qin, Laishun
    Chen, Da
    Huang, Yuexiang
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (24) : 8295 - 8304
  • [45] Z-scheme 3 D g-C3N4/TiO2-x Heterojunctions with High Photocatalytic Efficiency
    Li, Zhenxing
    Ge, Kai
    Yang, Kai
    Wang, Shuang
    Li, Xuehan
    He, Jiahui
    Fu, Congcong
    Ye, Jin
    Zhang, Yue
    Yang, Yongfang
    CHEMISTRYSELECT, 2020, 5 (36): : 11159 - 11169
  • [46] Ag/α-Fe2O3/g-C3N4 nanocomposites as Z-scheme heterojunction photocatalysts for degradation of RhB
    Hu, Feng
    Li, Jing
    Peng, Xiaoling
    Xu, Jiaxin
    Xu, Jingcai
    Zeng, Yunxiong
    Chen, Hongwei
    Hong, Bo
    Wang, Xinqing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 983
  • [47] Enhanced 4-chlorophenol Degradation under Visible and Solar Radiation through TiO2/g-C3N4 Z-Scheme Heterojunction
    Rodrigues, Karla Faquine
    de Moraes, Nicolas Perciani
    dos Santos, Alan Silva
    do Amaral Montanheiro, Thais Larissa
    Bastos Campos, Tiago Moreira
    Thim, Gilmar Patrocinio
    Rodrigues, Liana Alvares
    Brunelli, Deborah Dibbern
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2023, 13 (03):
  • [48] Modification of AgInS2/g-C3N4 Z-Scheme Heterojunction by Ag Nanoparticles to Increase Photocatalytic Rate
    Yang Bai
    Zhongxiang Chen
    Deng Gu
    Ren Wang
    Jianing He
    Catalysis Letters, 2025, 155 (5)
  • [49] Visible Light Induced g-C3N4/TiO2/Ti3C2 Ternary Z-scheme Heterojunction Photocatalyst for Efficient Degradation
    Luo, Menghao
    Feng, Hange
    Hu, Yuechuan
    Chen, Keke
    Dong, Zibo
    Xue, Shaolin
    ELECTRONIC MATERIALS LETTERS, 2023, 19 (01) : 94 - 107