Two-dimensional g-C3N4/TiO2 nanocomposites as vertical Z-scheme heterojunction for improved photocatalytic water disinfection

被引:100
|
作者
Liu, Yue [1 ]
Zeng, Xiangkang [2 ]
Hu, Xiaoyi [1 ]
Hu, Jian [1 ]
Wang, Zhouyou [1 ]
Yin, Yichun [1 ]
Sun, Chenghua [3 ]
Zhang, Xiwang [1 ]
机构
[1] Monash Univ, Dept Chem Engn, Clayton, Vic 3168, Australia
[2] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[3] Swinburne Univ Technol, Fac Sci Engn & Technol, Dept Chem & Biotechnol, Hawthorn, Vic 3122, Australia
关键词
Photocatalysis Water disinfection; Two-dimensional materials; Vertical heterojunction; Z-scheme heterojunction; REDUCED GRAPHENE OXIDE; 001 ACTIVE FACETS; VISIBLE-LIGHT; BACTERIAL INACTIVATION; TIO2; NANOSHEETS; CARBON NITRIDE; GENERATION; CONTACT; UV; CONSTRUCTION;
D O I
10.1016/j.cattod.2018.11.053
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Developing highly active photocatalysts towards effective microorganism inactivation is a green and energy-smart strategy in response to the growing demands to water quality under the background of the water crisis. Here, a vertical face-to-face heterojunction is fabricated by horizontally assembling TiO2 nanosheets with {001} facets exposed on graphitic carbon nitride (g-C3N4) sheets through a facile hydrothermal driving coupling. The vertical heterojunction could almost completely disinfect 103 CFU/mL E. coli within 30 min under solar light, which is more efficient than the physically mixed composite and pure g-C3N4 and TiO2. The two-dimensional (2D) morphology provides ample surface area in forming the vertical heterojunction and enables intimate contact which is advantageous to charge transfer between g-C3N4 and TiO2. A Z-scheme charge transportation mechanism is confirmed through band structure analysis and reactive species (RSs) probing and trapping experiments. In comparison with physically mixed composite and the single-phase counterparts, the nanocomposite based on a Z-scheme electron transfer mode effectively prompts charge pair dissociation and subsequently encourages bacterial inactivation by boosting the generation of RSs. The constructing vertical Z-scheme heterojunction highlights the potential of 2D nanomaterials for accelerated water sterilization.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 50 条
  • [31] Construction of g-C3N4 nanoparticles modified TiO2 nanotube arrays with Z-scheme heterojunction for enhanced photoelectrochemical properties
    Zhang, Fengling
    Liu, Jianxing
    Yue, Hongrui
    Cheng, Gongjin
    Xue, Xiangxin
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (06) : 2676 - 2688
  • [32] Construction of g-C3N4 nanoparticles modified TiO2 nanotube arrays with Z-scheme heterojunction for enhanced photoelectrochemical properties
    Fengling Zhang
    Jianxing Liu
    Hongrui Yue
    Gongjin Cheng
    Xiangxin Xue
    Journal of Materials Science, 2023, 58 : 2676 - 2688
  • [33] Ultrathin Two-Dimensional BiOCl with Oxygen Vacancies Anchored in Three-Dimensional Porous g-C3N4 to Construct a Hierarchical Z-Scheme Heterojunction for the Photocatalytic Degradation of NO
    Wang, Mengmeng
    Wang, Beibei
    Xie, Bingke
    Li, Najun
    Xu, Qingfeng
    Li, Hua
    He, Jinghui
    Chen, Dongyun
    Lu, Jianmei
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (01) : 317 - 329
  • [34] B-Doped g-C3N4/Black TiO2 Z-Scheme Nanocomposites for Enhanced Visible-Light-Driven Photocatalytic Performance
    Wang, Yuwei
    Xu, Kelin
    Fan, Liquan
    Jiang, Yongwang
    Yue, Ying
    Jia, Hongge
    NANOMATERIALS, 2023, 13 (03)
  • [35] Two-dimensional C3N/WS2 vdW heterojunction for direct Z-scheme photocatalytic overall water splitting
    Li, Haotian
    Xu, Liang
    Huang, Xin
    Ou-Yang, Jie
    Chen, Min
    Zhang, Ying
    Tang, Shuaihao
    Dong, Kejun
    Wang, Ling-Ling
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (06) : 2186 - 2199
  • [36] NiCo/ZnO/g-C3N4 Z-scheme heterojunction nanoparticles with enhanced photocatalytic degradation oxytetracycline
    Wu, Jiao
    Hu, Jingyu
    Qian, Honghong
    Li, Jianjun
    Yang, Ran
    Qu, Lingbo
    DIAMOND AND RELATED MATERIALS, 2022, 121
  • [37] Synergistic interaction of Z-scheme TiO2/g-C3N4 photocatalyst and peroxymonosulfate for improving the photocatalytic efficiency of Rhodamine B
    Zhang, Zhengdong
    Chen, Xingyu
    Chen, Shanhua
    Dong, Qi
    Zhang, Xinyi
    Jiang, Ao
    Zhang, Dafu
    Di, Yuli
    Li, Taishan
    OPTICAL MATERIALS, 2022, 133
  • [38] Indirect Z-scheme TiO2/BC/g-C3N4 for efficient photocatalytic reduction of Cr(VI) in aqueous solution
    Chen, Mingliang
    Wang, Guanghui
    Dai, Jialing
    Li, Haifeng
    Deng, Nansheng
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2024, 99 (02) : 415 - 425
  • [39] Construction of Z-scheme SbVO4/g-C3N4 heterojunction with efficient photocatalytic degradation performance
    Wang, Ling
    Zhu, Xiaoya
    Rong, Jian
    Feng, Chujun
    Liu, Congtian
    Wang, Yanan
    Li, Zhongyu
    Xu, Song
    SOLID STATE SCIENCES, 2024, 155
  • [40] Direct Z-scheme Bi2O2CO3/porous g-C3N4 heterojunction for improved photocatalytic degradation performance
    Duan, Yongzheng
    Li, Jing
    Li, Yuejin
    Shang, Xili
    Jia, Dongmei
    Li, Changhai
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2020, 106 (106) : 74 - 85