The RNA Architecture of the SARS-CoV-2 3′-Untranslated Region

被引:35
|
作者
Zhao, Junxing [1 ]
Qiu, Jianming [2 ]
Aryal, Sadikshya [1 ]
Hackett, Jennifer L. [3 ]
Wang, Jingxin [1 ]
机构
[1] Univ Kansas, Dept Med Chem, Lawrence, KS 66047 USA
[2] Univ Kansas, Dept Microbiol Mol Genet & Immunol, Med Ctr, Kansas City, KS 66160 USA
[3] Univ Kansas, Genome Sequencing Core, Lawrence, KS 66045 USA
来源
VIRUSES-BASEL | 2020年 / 12卷 / 12期
关键词
SARS-CoV-2; COVID-19; DMS; DMS-MaPseq; ShapeKnots; DREEM; pseudoknot; three-helix junction; 3′ UTR; minigene; PUTATIVE MOLECULAR SWITCH; SECONDARY STRUCTURE; PRIMER EXTENSION; CORONAVIRUS; PSEUDOKNOT; SHAPE; GENOME; MAP;
D O I
10.3390/v12121473
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. The 3 ' untranslated region (UTR) of this beta-CoV contains essential cis-acting RNA elements for the viral genome transcription and replication. These elements include an equilibrium between an extended bulged stem-loop (BSL) and a pseudoknot. The existence of such an equilibrium is supported by reverse genetic studies and phylogenetic covariation analysis and is further proposed as a molecular switch essential for the control of the viral RNA polymerase binding. Here, we report the SARS-CoV-2 3 ' UTR structures in cells that transcribe the viral UTRs harbored in a minigene plasmid and isolated infectious virions using a chemical probing technique, namely dimethyl sulfate (DMS)-mutational profiling with sequencing (MaPseq). Interestingly, the putative pseudoknotted conformation was not observed, indicating that its abundance in our systems is low in the absence of the viral nonstructural proteins (nsps). Similarly, our results also suggest that another functional cis-acting element, the three-helix junction, cannot stably form. The overall architectures of the viral 3 ' UTRs in the infectious virions and the minigene-transfected cells are almost identical.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Wastewater Surveillance for SARS-CoV-2 RNA in Canada
    Hrudey, Steve E.
    Bischel, Heather N.
    Charrois, Jeff
    Chik, Alex H. S.
    Conant, Bernadette
    Delatolla, Rob
    Dorner, Sarah
    Graber, Tyson E.
    Hubert, Casey
    Isaac-Renton, Judy
    Pons, Wendy
    Safford, Hannah
    Servos, Mark
    Sikora, Christopher
    FACETS, 2022, 7 : 1493 - 1597
  • [32] Sensitive visualization of SARS-CoV-2 RNA with CoronaFISH
    Rensen, Elena
    Pietropaoli, Stefano
    Mueller, Florian
    Weber, Christian
    Souquere, Sylvie
    Sommer, Sina
    Isnard, Pierre
    Rabant, Marion
    Gibier, Jean-Baptiste
    Terzi, Fabiola
    Simon-Loriere, Etienne
    Rameix-Welti, Marie-Anne
    Pierron, Gerard
    Barba-Spaeth, Giovanna
    Zimmer, Christophe
    LIFE SCIENCE ALLIANCE, 2022, 5 (04) : 1 - 15
  • [33] Accumulation of SARS-CoV-2 RNA in Sewer Biofilms
    Medina, William R. Morales
    D'Elia, Stephanie
    Fahrenfeld, Nicole L.
    ACS ES&T WATER, 2022, : 1844 - 1851
  • [34] SARS-CoV-2 RNA and antibodies in tear fluid
    Muyldermans, Astrid
    Bjerke, Maria
    Demuyser, Thomas
    De Geyter, Deborah
    Wybo, Ingrid
    Soetens, Oriane
    Weets, Ilse
    Kuijpers, Robert
    Allard, Sabine D.
    Pierard, Denis
    Raus, Peter P. M.
    BMJ OPEN OPHTHALMOLOGY, 2021, 6 (01):
  • [35] Stability of SARS-CoV-2 RNA in Nonsupplemented Saliva
    Ott, Isabel M.
    Strine, Madison S.
    Watkins, Anne E.
    Boot, Maikel
    Kalinich, Chaney C.
    Harden, Christina A.
    Vogels, Chantal B. F.
    Casanovas-Massana, Arnau
    Moore, Adam J.
    Muenker, M. Catherine
    Nakahata, Maura
    Tokuyama, Maria
    Nelson, Allison
    Fournier, John
    Bermejo, Santos
    Campbell, Melissa
    Datta, Rupak
    Dela Cruz, Charles S.
    Farhadian, Shelli F.
    Ko, Albert, I
    Iwasaki, Akiko
    Grubaugh, Nathan D.
    Wilen, Craig B.
    Wyllie, Anne L.
    EMERGING INFECTIOUS DISEASES, 2021, 27 (04) : 1146 - 1150
  • [36] Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice
    Pruijssers, Andrea J.
    George, Amelia S.
    Schafer, Alexandra
    Leist, Sarah R.
    Gralinksi, Lisa E.
    Dinnon, Kenneth H., III
    Yount, Boyd L.
    Agostini, Maria L.
    Stevens, Laura J.
    Chappell, James D.
    Lu, Xiaotao
    Hughes, Tia M.
    Gully, Kendra
    Martinez, David R.
    Brown, Ariane J.
    Graham, Rachel L.
    Perry, Jason K.
    Du Pont, Venice
    Pitts, Jared
    Ma, Bin
    Babusis, Darius
    Murakami, Eisuke
    Feng, Joy Y.
    Bilello, John P.
    Porter, Danielle P.
    Cihlar, Tomas
    Baric, Ralph S.
    Denison, Mark R.
    Sheahan, Timothy P.
    CELL REPORTS, 2020, 32 (03):
  • [37] Prolonged SARS-CoV-2 Viral RNA Shedding and IgG Antibody Response to SARS-CoV-2 in Patients on Hemodialysis
    Shaikh, Aisha
    Zeldis, Etti
    Campbell, Kirk N.
    Chan, Lili
    CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 16 (02): : 290 - 292
  • [38] A preliminary study for evaluation of SARS-COV-2 RNA present on atherosclerotic plaques SARS-CoV-2 on the atherosclerotic plaques
    Donbaloglu, Mehmet Okan
    Gurkan, Selami
    Gur, Ozcan
    Uyar, Yavuz
    Artik, Yakup
    ANNALS OF CLINICAL AND ANALYTICAL MEDICINE, 2023, 14 : 283 - 287
  • [39] SARS-CoV-2 in Horses in the Thrace Region of Turkey
    Uslu, Ali
    Balevi, Asli
    Sayin, Zafer
    Adiay, Cumhur
    Tekindal, Mustafa Agah
    Erganis, Osman
    ACTA SCIENTIAE VETERINARIAE, 2024, 52
  • [40] Absence of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in stray cats
    Stranieri, Angelica
    Lauzi, Stefania
    Giordano, Alessia
    Galimberti, Luigi
    Ratti, Gabriele
    Decaro, Nicola
    Brioschi, Federica
    Lelli, Davide
    Gabba, Silvia
    Amarachi, Ndiana Linda
    Lorusso, Eleonora
    Moreno, Ana
    Trogu, Tiziana
    Paltrinieri, Saverio
    TRANSBOUNDARY AND EMERGING DISEASES, 2022, 69 (04) : 2089 - 2095