The RNA Architecture of the SARS-CoV-2 3′-Untranslated Region

被引:35
|
作者
Zhao, Junxing [1 ]
Qiu, Jianming [2 ]
Aryal, Sadikshya [1 ]
Hackett, Jennifer L. [3 ]
Wang, Jingxin [1 ]
机构
[1] Univ Kansas, Dept Med Chem, Lawrence, KS 66047 USA
[2] Univ Kansas, Dept Microbiol Mol Genet & Immunol, Med Ctr, Kansas City, KS 66160 USA
[3] Univ Kansas, Genome Sequencing Core, Lawrence, KS 66045 USA
来源
VIRUSES-BASEL | 2020年 / 12卷 / 12期
关键词
SARS-CoV-2; COVID-19; DMS; DMS-MaPseq; ShapeKnots; DREEM; pseudoknot; three-helix junction; 3′ UTR; minigene; PUTATIVE MOLECULAR SWITCH; SECONDARY STRUCTURE; PRIMER EXTENSION; CORONAVIRUS; PSEUDOKNOT; SHAPE; GENOME; MAP;
D O I
10.3390/v12121473
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. The 3 ' untranslated region (UTR) of this beta-CoV contains essential cis-acting RNA elements for the viral genome transcription and replication. These elements include an equilibrium between an extended bulged stem-loop (BSL) and a pseudoknot. The existence of such an equilibrium is supported by reverse genetic studies and phylogenetic covariation analysis and is further proposed as a molecular switch essential for the control of the viral RNA polymerase binding. Here, we report the SARS-CoV-2 3 ' UTR structures in cells that transcribe the viral UTRs harbored in a minigene plasmid and isolated infectious virions using a chemical probing technique, namely dimethyl sulfate (DMS)-mutational profiling with sequencing (MaPseq). Interestingly, the putative pseudoknotted conformation was not observed, indicating that its abundance in our systems is low in the absence of the viral nonstructural proteins (nsps). Similarly, our results also suggest that another functional cis-acting element, the three-helix junction, cannot stably form. The overall architectures of the viral 3 ' UTRs in the infectious virions and the minigene-transfected cells are almost identical.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Viral-host RNA-RNA interactions in SARS-CoV-2: Study of miR-34a-5p binding interactions within the genome 3′-untranslated region
    Frye, Caleb J.
    Cunningham, Caylee
    Kensinger, Adam H.
    Makowski, Joseph A.
    Evanseck, Jeffrey D.
    Mihailescu, Mihaela-Rita
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 359A - 359A
  • [22] Evaluation of Sample Pooling for the Detection of SARS-CoV-2 RNA Using the Cobas SARS-CoV-2 Test
    McMillen, T.
    Jani, K.
    Babady, E.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2020, 22 (11): : S38 - S38
  • [23] SARS-CoV-2 restructures host chromatin architecture
    Ruoyu Wang
    Joo-Hyung Lee
    Jieun Kim
    Feng Xiong
    Lana Al Hasani
    Yuqiang Shi
    Erin N. Simpson
    Xiaoyu Zhu
    Yi-Ting Chen
    Pooja Shivshankar
    Joanna Krakowiak
    Yanyu Wang
    David M. Gilbert
    Xiaoyi Yuan
    Holger K. Eltzschig
    Wenbo Li
    Nature Microbiology, 2023, 8 : 679 - 694
  • [24] SARS-CoV-2 restructures host chromatin architecture
    Wang, Ruoyu
    Lee, Joo-Hyung
    Kim, Jieun
    Xiong, Feng
    Hasani, Lana Al
    Shi, Yuqiang
    Simpson, Erin N.
    Zhu, Xiaoyu
    Chen, Yi-Ting
    Shivshankar, Pooja
    Krakowiak, Joanna
    Wang, Yanyu
    Gilbert, David M.
    Yuan, Xiaoyi
    Eltzschig, Holger K.
    Li, Wenbo
    NATURE MICROBIOLOGY, 2023, 8 (04) : 679 - +
  • [25] RNA polymerase: The Achilles heel of SARS-CoV-2
    Corteggiani, Marie
    Gombert, Lucas
    Pellegri, Callypso
    Aussel, Laurent
    M S-MEDECINE SCIENCES, 2021, 37 (03): : 288 - 292
  • [26] SARS-CoV-2 RNA loads in Vietnamese children
    Ton That Thanh
    Nguyen Thi Thanh Nhan
    Le Thanh Chung
    Phan Thi Thuy Duyen
    Le Thi Kim Chi
    Nguyen Thi Hoai Thu
    Pham Thi Hieu
    Dinh Van Phuc
    Pham Viet Son
    Dang Quang Anh
    Pham Thi Nam
    Nguyen Tri Thuc
    Nguyen Thi Hanh
    Le Thi Thuy
    Le Ly Thuy Tram
    Le Kim Thanh
    Nguyen Thi Han Ny
    Le Nguyen Truc Nhu
    Nguyen Van Vinh Chau
    Thwaites, Guy
    Tran Tan Thanh
    Le Van Tan
    JOURNAL OF INFECTION, 2022, 84 (04) : 612 - 613
  • [27] Enisamium Inhibits SARS-CoV-2 RNA Synthesis
    Elli, Stefano
    Bojkova, Denisa
    Bechtel, Marco
    Vial, Thomas
    Boltz, David
    Muzzio, Miguel
    Peng, Xinjian
    Sala, Federico
    Cosentino, Cesare
    Goy, Andrew
    Guerrini, Marco
    Mueller, Lutz
    Cinatl, Jindrich
    Margitich, Victor
    te Velthuis, Aartjan J. W.
    BIOMEDICINES, 2021, 9 (09)
  • [28] Messenger RNA vaccines against SARS-CoV-2
    Topol, Eric J.
    CELL, 2021, 184 (06) : 1401 - 1401
  • [29] SARS-CoV-2 targets ribosomal RNA biogenesis
    Yerlici, V. Talya
    Astori, Audrey
    Kejiou, Nevraj S.
    Jordan, Chris A.
    Khosraviani, Negin
    Chan, Janet N. Y.
    Hakem, Razqallah
    Raught, Brian
    Palazzo, Alexander F.
    Mekhail, Karim
    CELL REPORTS, 2024, 43 (03):
  • [30] Small Interfering RNA Against SARS-CoV-2
    不详
    CURRENT SCIENCE, 2023, 125 (12): : 1293 - 1293