Adaptive quantile estimation in deconvolution with unknown error distribution

被引:18
|
作者
Dattner, Itai [1 ]
Reiss, Markus [2 ]
Trabs, Mathias [2 ]
机构
[1] Univ Haifa, Dept Stat, IL-3498838 Haifa, Israel
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
adaptive estimation; deconvolution; distribution function; minimax convergence rates; plug-in estimator; quantile function; random Fourier multiplier; NONPARAMETRIC-ESTIMATION; DENSITY-ESTIMATION; LEVY PROCESSES; OPTIMAL RATES; CONVERGENCE; THEOREM;
D O I
10.3150/14-BEJ626
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic setup of unknown error distributions is covered. Our plug-in method is based on a deconvolution density estimator and is minimax optimal under minimal and natural conditions. This closes an important gap in the literature. Optimal adaptive estimation is obtained by a data-driven bandwidth choice. As a side result, we obtain optimal rates for the plug-in estimation of distribution functions with unknown error distributions. The method is applied to a real data example.
引用
收藏
页码:143 / 192
页数:50
相关论文
共 50 条
  • [41] DECONVOLUTION AND SPECTRAL ESTIMATION USING FINAL PREDICTION ERROR
    FRYER, GJ
    ODEGARD, ME
    SUTTON, GH
    GEOPHYSICS, 1975, 40 (03) : 411 - 425
  • [42] Computer implementation of probability distribution quantile estimation
    Yu, XC
    Yuan, ZY
    Yu, C
    Yang, M
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 2783 - 2788
  • [43] Quantile estimation for a progressively censored exponential distribution
    Tripathi, Yogesh Mani
    Petropoulos, Constantinos
    Sen, Tanmay
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (16) : 3919 - 3932
  • [44] PARAMETER AND QUANTILE ESTIMATION FOR THE GENERALIZED PARETO DISTRIBUTION
    HOSKING, JRM
    WALLIS, JR
    TECHNOMETRICS, 1987, 29 (03) : 339 - 349
  • [45] ON THE ESTIMATION OF AN UNKNOWN DISTRIBUTION BY THE TARGET DISTRIBUTION ESTIMATOR
    ELPHINSTONE, CD
    SOUTH AFRICAN STATISTICAL JOURNAL, 1987, 21 (02) : 181 - 182
  • [46] Deconvolution estimation of nerve conduction velocity distribution
    González-Cueto, JA
    Parker, PA
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (02) : 140 - 151
  • [47] Extreme quantile estimation with nonparametric adaptive importance sampling
    Morio, Jerome
    SIMULATION MODELLING PRACTICE AND THEORY, 2012, 27 : 76 - 89
  • [48] Reliability-based design by adaptive quantile estimation
    Ching, Jianye
    Hsu, Wei-Chih
    REC 2010: PROCEEDINGS OF THE 4TH INTERNATIONAL WORKSHOP ON RELIABLE ENGINEERING COMPUTING: ROBUST DESIGN - COPING WITH HAZARDS, RISK AND UNCERTAINTY, 2010, : 454 - 472
  • [49] On bivariate ranked set sampling for distribution and quantile estimation and quantile interval estimation using ratio estimator
    Samawi, HM
    Al-Saleh, MF
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (08) : 1801 - 1819
  • [50] Density deconvolution in a two-level heteroscedastic model with unknown error density
    Meister, Alexander
    Stadtmueller, Ulrich
    Wagner, Christian
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 36 - 57