Adaptive quantile estimation in deconvolution with unknown error distribution

被引:18
|
作者
Dattner, Itai [1 ]
Reiss, Markus [2 ]
Trabs, Mathias [2 ]
机构
[1] Univ Haifa, Dept Stat, IL-3498838 Haifa, Israel
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
adaptive estimation; deconvolution; distribution function; minimax convergence rates; plug-in estimator; quantile function; random Fourier multiplier; NONPARAMETRIC-ESTIMATION; DENSITY-ESTIMATION; LEVY PROCESSES; OPTIMAL RATES; CONVERGENCE; THEOREM;
D O I
10.3150/14-BEJ626
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic setup of unknown error distributions is covered. Our plug-in method is based on a deconvolution density estimator and is minimax optimal under minimal and natural conditions. This closes an important gap in the literature. Optimal adaptive estimation is obtained by a data-driven bandwidth choice. As a side result, we obtain optimal rates for the plug-in estimation of distribution functions with unknown error distributions. The method is applied to a real data example.
引用
收藏
页码:143 / 192
页数:50
相关论文
共 50 条
  • [31] Quantile adaptive lasso: variable selection for quantile treatment effect estimation
    Liu, Yahang
    Wei, Kecheng
    Huang, Chen
    Yu, Yongfu
    Qin, Guoyou
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2025, 95 (02) : 239 - 257
  • [32] Parameter and quantile estimation for the three-parameter lognormal distribution based on statistics invariant to unknown location
    Nagatsuka, Hideki
    Balakrishnan, N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (09) : 1629 - 1647
  • [33] DECONVOLUTION WITH UNKNOWN NOISE DISTRIBUTION IS POSSIBLE FOR MULTIVARIATE SIGNALS
    Gassiat, Elisabeth
    Le Corff, Sylvain
    Lehericy, Luc
    ANNALS OF STATISTICS, 2022, 50 (01): : 303 - 323
  • [34] Converting reliability constraints by adaptive quantile estimation
    Ching, Jianye
    Hsu, Wei-Chih
    STRUCTURAL SAFETY, 2010, 32 (05) : 316 - 325
  • [35] Partially adaptive estimation via quantile functions
    Tarsitano, Agostino
    Perri, Pier Francesco
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2007, 36 (02) : 277 - 296
  • [36] SIMEX estimation for quantile regression model with measurement error
    Yang, Yiping
    Zhao, Peixin
    Wu, Dongsheng
    STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 545 - 552
  • [37] Quantile regression estimation for distortion measurement error data
    Zhang, Jun
    Wang, Jiefei
    Niu, Cuizhen
    Sun, Ming
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (20) : 5107 - 5126
  • [38] ADAPTIVE MINIMUM PREDICTION-ERROR DECONVOLUTION AND SOURCE WAVELET ESTIMATION USING HOPFIELD NEURAL NETWORKS
    WANG, LX
    MENDEL, JM
    GEOPHYSICS, 1992, 57 (05) : 670 - 679
  • [39] ADAPTIVE AND SEQUENTIAL ESTIMATION TECHNIQUES FOR SEISMIC DECONVOLUTION
    RISTOW, D
    KOSBAHN, B
    GEOPHYSICS, 1977, 42 (07) : 1536 - 1536
  • [40] Estimation of adaptive parameters for satellite image deconvolution
    Jalobeanu, A
    Blanc-Féraud, L
    Zerubia, J
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 318 - 321