Cluster magnification and the mass-richness relation in CFHTLenS

被引:41
|
作者
Ford, Jes [1 ]
Hildebrandt, Hendrik [1 ,2 ]
Van Waerbeke, Ludovic [1 ]
Erben, Thomas [2 ]
Laigle, Clotilde [1 ,3 ,4 ,5 ]
Milkeraitis, Martha [1 ]
Morrison, Christopher B. [2 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Argelander Inst Astron, D-53121 Bonn, Germany
[3] Inst Astrophys Paris, F-75014 Paris, France
[4] UPMC, UMR 7095, F-75014 Paris, France
[5] Ecole Polytech, F-91128 Palaiseau, France
基金
加拿大自然科学与工程研究理事会;
关键词
gravitational lensing: weak; galaxies: clusters: general; galaxies: photometry; dark matter; LYMAN-BREAK GALAXIES; DARK-MATTER HALOS; LENSING MAGNIFICATION; PHOTOMETRIC REDSHIFTS; COSMIC MAGNIFICATION; LUMINOSITY FUNCTION; QUASARS; Z=3-5; II;
D O I
10.1093/mnras/stu225
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gravitational lensing magnification is measured with a significance of 9.7 Sigma on a large sample of galaxy clusters in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). This survey covers similar to 154 deg(2) and contains over 18 000 cluster candidates at redshifts 0.2 < z < 0.9, detected using the 3D-Matched Filter cluster-finder of Milkeraitis et al. We fit composite-NFW models to the ensemble, accounting for cluster miscentring, source-lens redshift overlap, as well as nearby structure (the two-halo term), and recover mass estimates of the cluster dark matter haloes in range of similar to 10(13) M-circle dot to 2 x 10(14) M-circle dot. Cluster richness is measured for the entire sample, and we bin the clusters according to both richness and redshift. A mass-richness relation M-200 = M-0(N-200/20)(beta) is fit to the measurements. For two different cluster miscentring models, we find consistent results for the normalization and slope, M-0 = (2.3 +/- 0.2) x 10(13) M-circle dot, beta = 1.4 +/- 0.1 and M-0 = (2.2 +/- 0.2) x 10(13) M-circle dot, beta = 1.5 +/- 0.1. We find that accounting for the full redshift distribution of lenses and sources is important, since any overlap can have an impact on mass estimates inferred from flux magnification.
引用
下载
收藏
页码:3755 / 3764
页数:10
相关论文
共 50 条
  • [31] Cluster richness-mass calibration with cosmic microwave background lensing
    Geach, James E.
    Peacock, John A.
    NATURE ASTRONOMY, 2017, 1 (11): : 795 - 799
  • [32] The Emergence of the X-Ray Luminosity/Cluster Richness Relation for Radio Galaxies
    Garofalo, David
    Singh, Chandra B.
    ASTROPHYSICAL JOURNAL, 2020, 905 (02):
  • [33] Gravitational magnification and cluster masses
    Taylor, AN
    ASTROPHYSICAL APPLICATIONS OF GRAVITATIONAL LENSING, 1996, (173): : 149 - 150
  • [34] CLUSTER MODEL OF MESONS AND SQUARE MASS RELATION
    TOYODA, F
    PROGRESS OF THEORETICAL PHYSICS, 1968, 39 (02): : 537 - &
  • [35] EXTRINSIC SOURCES OF SCATTER IN THE RICHNESS-MASS RELATION OF GALAXY CLUSTERS
    Rozo, Eduardo
    Rykoff, Eli
    Koester, Benjamin
    Nord, Brian
    Wu, Hao-Yi
    Evrard, August
    Wechsler, Risa
    ASTROPHYSICAL JOURNAL, 2011, 740 (02):
  • [36] The scaling relation between richness and mass of galaxy clusters: A Bayesian approach
    Andreon, S.
    Hurn, M.A.
    Monthly Notices of the Royal Astronomical Society, 2010, 404 (04): : 1922 - 1937
  • [37] Richness-mass relation self-calibration for galaxy clusters
    Andreon, S.
    Berge, J.
    ASTRONOMY & ASTROPHYSICS, 2012, 547
  • [38] The scaling relation between richness and mass of galaxy clusters: a Bayesian approach
    Andreon, S.
    Hurn, M. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 404 (04) : 1922 - 1937
  • [39] Cluster mass profiles from weak lensing: constraints from shear and magnification information
    Schneider, P
    King, L
    Erben, T
    ASTRONOMY & ASTROPHYSICS, 2000, 353 (01): : 41 - 56
  • [40] Galaxy cluster mass density profile derived using the submillimetre galaxies magnification bias
    Fernandez, L.
    Cueli, M. M.
    Gonzalez-Nuevo, J.
    Bonavera, L.
    Crespo, D.
    Casas, J. M.
    Lapi, A.
    ASTRONOMY & ASTROPHYSICS, 2022, 658