On random k-out subgraphs of large graphs

被引:7
|
作者
Frieze, Alan [1 ]
Johansson, Tony [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
random subgraph; Hamilton cycle; k-out; MATCHINGS; DIGRAPHS;
D O I
10.1002/rsa.20650
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider random subgraphs of a fixed graph G=(V,E) with large minimum degree. We fix a positive integer k and let G(k) be the random subgraph where each vV independently chooses k random neighbors, making kn edges in all. When the minimum degree (G)(12+epsilon)n,n=|V| then G(k) is k-connected w.h.p. for k=O(1); Hamiltonian for k sufficiently large. When (G)m, then G(k) has a cycle of length (1-epsilon)m for kk epsilon. By w.h.p. we mean that the probability of non-occurrence can be bounded by a function phi(n) (or phi(m)) where limn phi(n)=0. (c) 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 143-157, 2017
引用
收藏
页码:143 / 157
页数:15
相关论文
共 50 条
  • [21] K4-free subgraphs of random graphs revisited
    S. Gerke
    H. J. Prömel
    T. Schickinger
    A. Steger
    A. Taraz
    Combinatorica, 2007, 27 : 329 - 365
  • [23] DISTANCE BETWEEN TWO RANDOM k-OUT DIGRAPHS, WITH AND WITHOUT PREFERENTIAL ATTACHMENT
    Peterson, Nicholas R.
    Pittel, Boris
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (03) : 858 - 879
  • [24] Subgraphs of Random k-Edge-Coloured k-Regular Graphs
    Lieby, Paulette
    McKay, Brendan D.
    McLeod, Jeanette C.
    Wanless, Ian M.
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (04): : 533 - 549
  • [25] Regular subgraphs of random graphs
    Bollobas, Bela
    Kim, Jeong Han
    Verstraete, Jacques
    RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (01) : 1 - 13
  • [26] Pancyclic subgraphs of random graphs
    Lee, Choongbum
    Samotij, Wojciech
    JOURNAL OF GRAPH THEORY, 2012, 71 (02) : 142 - 158
  • [27] Extremal subgraphs of random graphs
    Brightwell, Graham
    Panagiotou, Konstantinos
    Steger, Angelika
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (02) : 147 - 178
  • [28] Solitary subgraphs of random graphs
    Kurkowiak, J
    Rucinski, A
    DISCRETE MATHEMATICS, 2000, 213 (1-3) : 195 - 209
  • [29] EXTREMAL SUBGRAPHS OF RANDOM GRAPHS
    BABAI, L
    SIMONOVITS, M
    SPENCER, J
    JOURNAL OF GRAPH THEORY, 1990, 14 (05) : 599 - 622
  • [30] On Extremal Subgraphs of Random Graphs
    Brightwell, Graham
    Panagiotou, Konstantinos
    Steger, Angelika
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 477 - +