On random k-out subgraphs of large graphs

被引:7
|
作者
Frieze, Alan [1 ]
Johansson, Tony [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
random subgraph; Hamilton cycle; k-out; MATCHINGS; DIGRAPHS;
D O I
10.1002/rsa.20650
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider random subgraphs of a fixed graph G=(V,E) with large minimum degree. We fix a positive integer k and let G(k) be the random subgraph where each vV independently chooses k random neighbors, making kn edges in all. When the minimum degree (G)(12+epsilon)n,n=|V| then G(k) is k-connected w.h.p. for k=O(1); Hamiltonian for k sufficiently large. When (G)m, then G(k) has a cycle of length (1-epsilon)m for kk epsilon. By w.h.p. we mean that the probability of non-occurrence can be bounded by a function phi(n) (or phi(m)) where limn phi(n)=0. (c) 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 143-157, 2017
引用
收藏
页码:143 / 157
页数:15
相关论文
共 50 条
  • [11] On the Connectivity and Giant Component Size of Random K-out Graphs Under Randomly Deleted Nodes
    Elumar, Eray Can
    Sood, Mansi
    Yagan, Osman
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2572 - 2577
  • [12] On K-4-free subgraphs of random graphs
    Kohayakawa, Y
    Luczak, T
    Rodl, V
    COMBINATORICA, 1997, 17 (02) : 173 - 213
  • [13] On the threshold for k-regular subgraphs of random graphs
    Paweł Prałat
    Jacques Verstraëte
    Nicholas Wormald
    Combinatorica, 2011, 31 : 565 - 581
  • [14] K5-free subgraphs of random graphs
    Gerke, S
    Schickinger, T
    Steger, A
    RANDOM STRUCTURES & ALGORITHMS, 2004, 24 (02) : 194 - 232
  • [15] On the threshold for k-regular subgraphs of random graphs
    Pralat, Pawel
    Verstraete, Jacques
    Wormald, Nicholas
    COMBINATORICA, 2011, 31 (05) : 565 - 581
  • [16] SUBGRAPHS OF RANDOM GRAPHS
    FREMLIN, DH
    TALAGRAND, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 291 (02) : 551 - 582
  • [17] Large induced subgraphs of random graphs with given degree sequences
    Southwell, Angus
    Wormald, Nick
    RANDOM STRUCTURES & ALGORITHMS, 2024,
  • [18] Paths and cycles in random subgraphs of graphs with large minimum degree
    Ehard, Stefan
    Joos, Felix
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [19] CONNECTIVITY OF THE k-OUT HYPERCUBE
    Anastos, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 2194 - 2216
  • [20] K4-free subgraphs of random graphs revisited
    Gerke, S.
    Proemel, H. J.
    Schickinger, T.
    Steger, A.
    Taraz, A.
    COMBINATORICA, 2007, 27 (03) : 329 - 365