A note on equal coefficient quadrature rules

被引:0
|
作者
Hashemiparast, S. M.
Eslahchi, M. R.
Dehghan, Mehdi
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran, Iran
[2] KN Toosi Univ Technol, Dept Math, Tehran, Iran
[3] Management & Planning Org, Tehran, Iran
关键词
equal coefficients; quadrature rules; numerical integration methods; degree of precision; the method of undetermined coefficient;
D O I
10.1016/j.amc.2005.11.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce an integration method with equal coefficient in the following form: integral(b)(a) w(x)f(x)dx similar or equal to C-n Sigma(n)(i=1) f (x(i)). Then by using the formulas of Newton's equations and degree of precision we introduce a method which express the nodes and coefficients in this integration formulas. Finally some examples are presented to illustrate the procedure. (c) 2006 Published by Elsevier Inc.
引用
收藏
页码:153 / 159
页数:7
相关论文
共 50 条
  • [31] Quadrature rules and distribution of points on manifolds
    Brandolini, Luca
    Choirat, Christine
    Colzani, Leonardo
    Gigante, Giacomo
    Seri, Raffaello
    Travaglini, Giancarlo
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2014, 13 (04) : 889 - 923
  • [32] Interpolatory Quadrature Rules for Oscillatory Integrals
    Veerle Ledoux
    Marnix Van Daele
    Journal of Scientific Computing, 2012, 53 : 586 - 607
  • [33] Szego-Lobatto quadrature rules
    Jagels, Carl
    Reichel, Lothar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 116 - 126
  • [34] A note on equal convergence
    Prokaj, V
    ACTA MATHEMATICA HUNGARICA, 1996, 73 (1-2) : 155 - 158
  • [35] Computing discrepancies of Smolyak quadrature rules
    Frank, K
    Heinrich, S
    JOURNAL OF COMPLEXITY, 1996, 12 (04) : 287 - 314
  • [36] ON QUASI DEGREE QUADRATURE-RULES
    LYNESS, JN
    GATTESCHI, L
    NUMERISCHE MATHEMATIK, 1982, 39 (02) : 259 - 267
  • [37] Quadrature rules based on the Arnoldi process
    Calvetti, D
    Kim, SM
    Reichel, L
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (03) : 765 - 781
  • [38] ON GAUSS-TYPE QUADRATURE RULES
    Bokhari, M. A.
    Qadir, Asghar
    Al-Attas, H.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (10) : 1120 - 1134
  • [39] Interpolatory Quadrature Rules for Oscillatory Integrals
    Ledoux, Veerle
    Van Daele, Marnix
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 53 (03) : 586 - 607
  • [40] IN DEFENSE OF LINEAR QUADRATURE-RULES
    SQUIRE, W
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1981, 7 (02) : 147 - 149