A note on equal coefficient quadrature rules

被引:0
|
作者
Hashemiparast, S. M.
Eslahchi, M. R.
Dehghan, Mehdi
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran, Iran
[2] KN Toosi Univ Technol, Dept Math, Tehran, Iran
[3] Management & Planning Org, Tehran, Iran
关键词
equal coefficients; quadrature rules; numerical integration methods; degree of precision; the method of undetermined coefficient;
D O I
10.1016/j.amc.2005.11.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce an integration method with equal coefficient in the following form: integral(b)(a) w(x)f(x)dx similar or equal to C-n Sigma(n)(i=1) f (x(i)). Then by using the formulas of Newton's equations and degree of precision we introduce a method which express the nodes and coefficients in this integration formulas. Finally some examples are presented to illustrate the procedure. (c) 2006 Published by Elsevier Inc.
引用
收藏
页码:153 / 159
页数:7
相关论文
共 50 条
  • [21] ON QUADRATURE-FORMULAS WITH EQUAL WEIGHTS
    FORSTER, KJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (04): : T77 - T79
  • [22] Quadrature rules from a RII type recurrence relation and associated quadrature rules on the unit circle
    Cleonice F. Bracciali
    Junior A. Pereira
    A. Sri Ranga
    Numerical Algorithms, 2020, 83 : 1029 - 1061
  • [23] Quadrature rules from a RII type recurrence relation and associated quadrature rules on the unit circle
    Bracciali, Cleonice F.
    Pereira, Junior A.
    Ranga, A. Sri
    NUMERICAL ALGORITHMS, 2020, 83 (03) : 1029 - 1061
  • [24] The set of anti-Gaussian quadrature rules for the optimal set of quadrature rules in Borges' sense
    Petrovic, Nevena Z.
    Pranic, Miroslav S.
    Stanic, Marija P.
    Mladenovic, Tatjana V. Tomovic
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [25] A new class of quadrature rules for estimating the error in Gauss quadrature
    Pejcev, Aleksandar V.
    Reichel, Lothar
    Spalevic, Miodrag M.
    Spalevic, Stefan M.
    APPLIED NUMERICAL MATHEMATICS, 2024, 204 : 206 - 221
  • [26] A NOTE ON THE ERROR IN GAUSSIAN QUADRATURE
    MARTIN, C
    STAMP, M
    APPLIED MATHEMATICS AND COMPUTATION, 1992, 47 (01) : 25 - 35
  • [27] NOTE ON COHERENT QUADRATURE MODULATION
    AMOROSO, F
    IEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGY, 1969, CO17 (05): : 581 - &
  • [28] Note on Archimedes' quadrature of the parabola
    Vallo, Dusan
    Fulier, Jozef
    Rumanova, Lucia
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2022, 53 (04) : 1025 - 1036
  • [29] Note on Romberg Quadrature Formula
    Gao, Shang
    Gao, Yi
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION (ICMS2011), VOL 1, 2011, : 69 - 72
  • [30] Extended quadrature rules for oscillatory integrands
    Kim, KJ
    Cools, R
    Ixaru, LG
    APPLIED NUMERICAL MATHEMATICS, 2003, 46 (01) : 59 - 73