Multi-periodic nonlinear repetitive control: Feedback stability analysis

被引:0
|
作者
Owens, DH [1 ]
Li, LM [1 ]
Banks, SP [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the stability of multi-periodic repetitive control problem,where two or more periods exist in the reference and disturbance signals, is studied. A Lyapunov analysis is used to prove L-2(m) (0, infinity) boolean ANDL(infinity)(m) (0, infinity) stability for a class of passive nonlinear systems subject to a class of nonlinear perturbations. A proof of exponential stability under a strictly positive real condition is provided.
引用
收藏
页码:275 / 283
页数:9
相关论文
共 50 条
  • [21] MULTI-PERIODIC FLOWS, CHAOS AND LYAPUNOV EXPONENTS
    FUJISAKA, H
    PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (04): : 1105 - 1121
  • [22] Multi-Periodic Auroral and Thermospheric Variations in 2006
    Zhang, Yongliang
    Paxton, Larry J.
    Kil, Hyosub
    TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 2013, 24 (02): : 207 - 212
  • [23] ABSOLUTE STABILITY OF CONTROL SYSTEM WITH MULTI-NONLINEAR FEEDBACK TERMS
    廖晓昕
    王晓君
    舒卫华
    吴卫华
    ActaMathematicaScientia, 1996, (03) : 302 - 307
  • [24] Absolute stability of control system with multi-nonlinear feedback terms
    Liao, XX
    Wang, XJ
    Shu, WH
    Wu, WH
    ACTA MATHEMATICA SCIENTIA, 1996, 16 (03) : 302 - 307
  • [25] Iterative Learning Control Design Based on Feedback Linearization and Nonlinear Repetitive Process Stability Theory
    Pakshin, Pavel
    Emelianova, Julia
    Emelianov, Mikhail
    Galkowski, Krzysztof
    Rogers, Eric
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5478 - 5483
  • [26] An Improved Learning Variable Structure Control Method for Multi-periodic Disturbances Rejection
    Li, Fang
    Ye, Peiqing
    Zhang, Hui
    2015 INTERNATIONAL WORKSHOP ON RECENT ADVANCES IN SLIDING MODES (RASM), 2015,
  • [27] Multi-periodic coherent states and the WKB exactness
    Fujii, K
    Funahashi, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) : 5987 - 6011
  • [28] Stability analysis for nonlinear feedback control systems with linear actuators
    Fang, JA
    Gu, GX
    Liu, KZ
    PROCEEDINGS OF THE 4TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-4, 2002, : 221 - 225
  • [29] Matching conditions for stability analysis of nonlinear feedback control systems
    Desages, AC
    Colantonio, MC
    Chen, G
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (10) : 1 - 10
  • [30] Stability analysis for nonlinear feedback control systems with linear actuators
    Fang, J
    Gu, GX
    Liu, KZ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (04) : 649 - 654