Characterization of partial derivatives with respect to material parameters in a fluid-solid interaction problem

被引:2
|
作者
Azpiroz, Izar [1 ]
Barucq, Helene [1 ]
Djellouli, Rabia [2 ]
Ha Pham [1 ]
机构
[1] Univ Pau & Pays Adour, LMA UMR CNRS 5142, Project Team Mag 313, Inria Bordeaux Sud Ouest Res Ctr,E2S, Pau, France
[2] Calif State Univ Northridge, Dept Math, IRIS, Northridge, CA 91330 USA
关键词
Sensitivity with respect to Lame parameters; Partial Frechet derivative; Fluid-solid interaction; Approximate far-field-pattern; BOUNDARY INTEGRAL-OPERATORS; FRECHET DIFFERENTIABILITY; FAR-FIELD; SCATTERING; DOMAIN;
D O I
10.1016/j.jmaa.2018.05.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a fluid-solid interaction problem with Lipschitz interface, we investigate the partial Frechet differentiability of the solutions and the approximate far-field-pattern with respect to solid material parameters. Differentiability is shown in standard Sobolev framework, and the derivatives are characterized as solutions to inhomogeneous fluid-solid transmission problems. To validate the accuracy of the characterization, we compare analytical values with numerical ones given by Interior Penalty Discontinuous Galerkin (IPDG) in a setting with circular obstacles. Our comparisons also show that IPDG gives results with high precision and incurs almost no effect of discretization error accumulation. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:903 / 927
页数:25
相关论文
共 50 条
  • [1] AN INVERSE FLUID-SOLID INTERACTION PROBLEM
    Monk, Peter
    Selgas, Virginia
    [J]. INVERSE PROBLEMS AND IMAGING, 2009, 3 (02) : 173 - 198
  • [2] An inverse problem for fluid-solid interaction
    Elschner, Johannes
    Hsiao, George C.
    Rathsfeld, Andreas
    [J]. INVERSE PROBLEMS AND IMAGING, 2008, 2 (01) : 83 - 119
  • [3] Stability of equilibria and bifurcations for a fluid-solid interaction problem
    Bonheure, Denis
    Galdi, Giovanni P.
    Gazzola, Filippo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 408 : 324 - 367
  • [4] The fluid-solid interaction scattering problem with unknown buried objects
    Xiang, Jianli
    Yan, Guozheng
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (01): : 1 - 19
  • [5] A boundary integral equation method for the fluid-solid interaction problem
    Sun, Yao
    Wang, Pan
    Lu, Xinru
    Chen, Bo
    [J]. COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (04): : 716 - 742
  • [6] Chaotic motion in fluid-solid interaction problem of the elastic cylinder
    Yang, Yang
    Bai, Xiangzhong
    Tian, Zhenguo
    Wang, Huan
    [J]. ICIC Express Letters, 2009, 3 (03): : 439 - 444
  • [7] THE FACTORIZATION METHOD FOR AN INVERSE FLUID-SOLID INTERACTION SCATTERING PROBLEM
    Kirsch, Andreas
    Ruiz, Albert
    [J]. INVERSE PROBLEMS AND IMAGING, 2012, 6 (04) : 681 - 695
  • [8] ON DYNAMICAL THREE-DIMENSIONAL FLUID-SOLID INTERACTION PROBLEM
    Avalishvili, Gia
    Avalishvili, Mariam
    Gordeziani, David
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2008, 15 (04) : 601 - 618
  • [9] Simulating fluid-solid interaction
    Génevaux, O
    Habibi, A
    Dischler, JM
    [J]. GRAPHICS INTERFACE 2003, PROCEEDING, 2003, : 31 - 38
  • [10] Finite-element analysis of a static fluid-solid interaction problem
    Araya, Rodolfo
    Barrenechea, Gabriel R.
    Jaillet, Fabrice
    Rodriguez, Rodolfo
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 886 - 913