Characterization of partial derivatives with respect to material parameters in a fluid-solid interaction problem

被引:2
|
作者
Azpiroz, Izar [1 ]
Barucq, Helene [1 ]
Djellouli, Rabia [2 ]
Ha Pham [1 ]
机构
[1] Univ Pau & Pays Adour, LMA UMR CNRS 5142, Project Team Mag 313, Inria Bordeaux Sud Ouest Res Ctr,E2S, Pau, France
[2] Calif State Univ Northridge, Dept Math, IRIS, Northridge, CA 91330 USA
关键词
Sensitivity with respect to Lame parameters; Partial Frechet derivative; Fluid-solid interaction; Approximate far-field-pattern; BOUNDARY INTEGRAL-OPERATORS; FRECHET DIFFERENTIABILITY; FAR-FIELD; SCATTERING; DOMAIN;
D O I
10.1016/j.jmaa.2018.05.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a fluid-solid interaction problem with Lipschitz interface, we investigate the partial Frechet differentiability of the solutions and the approximate far-field-pattern with respect to solid material parameters. Differentiability is shown in standard Sobolev framework, and the derivatives are characterized as solutions to inhomogeneous fluid-solid transmission problems. To validate the accuracy of the characterization, we compare analytical values with numerical ones given by Interior Penalty Discontinuous Galerkin (IPDG) in a setting with circular obstacles. Our comparisons also show that IPDG gives results with high precision and incurs almost no effect of discretization error accumulation. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:903 / 927
页数:25
相关论文
共 50 条
  • [31] Analysis of finite element methods and domain decomposition algorithms for a fluid-solid interaction problem
    Feng, XB
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) : 1312 - 1336
  • [32] BOUNDARY INTEGRAL EQUATION METHODS FOR THE TWO-DIMENSIONAL FLUID-SOLID INTERACTION PROBLEM
    Yin, Tao
    Hsiao, George C.
    Xu, Liwei
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (05) : 2361 - 2393
  • [33] A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem
    Jiang, Fei
    Liu, Haihu
    Chen, Xian
    Tsuji, Takeshi
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 454
  • [34] Canonical problem for fluid-solid interfacial wave coupling
    [J]. Proc Royal Soc London Ser A Math Phys Eng Sci, 1950 (1695-1711):
  • [35] Limiting behaviour of a spectral problem in fluid-solid structures
    Conca, C.
    Planchard, J.
    Vanninathan, M.
    [J]. Asymptotic Analysis, 1993, 6 (04) : 365 - 389
  • [36] A canonical problem for fluid-solid interfacial wave coupling
    Craster, RV
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1950): : 1695 - 1711
  • [37] Fluid-solid interaction analysis using ANSYS/multiphysics
    Rao, A
    [J]. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1492 - 1496
  • [38] OpenFOAM FINITE VOLUME SOLVER FOR FLUID-SOLID INTERACTION
    Tukovic, Zeljko
    Karac, Aleksandar
    Cardiff, Philip
    Jasak, Hrvoje
    Ivankovic, Alojz
    [J]. TRANSACTIONS OF FAMENA, 2018, 42 (03) : 1 - 31
  • [39] Moving immersed boundary method for fluid-solid interaction
    Cai, Shang-Gui
    Ouahsine, Abdellatif
    Hoarau, Yannick
    [J]. PHYSICS OF FLUIDS, 2022, 34 (05)
  • [40] Fluid-solid interaction in particle-laden flows
    Liu, QQ
    Singh, VP
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2004, 130 (12) : 1476 - 1485