Stability of equilibria and bifurcations for a fluid-solid interaction problem

被引:0
|
作者
Bonheure, Denis [1 ]
Galdi, Giovanni P. [2 ]
Gazzola, Filippo [3 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Blvd Triomphe 155, B-1050 Brussels, Belgium
[2] Univ Pittsburgh, Dipartment Mech Engn & Mat Sci, 4200 5th Ave, Pittsburgh, PA 15213 USA
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
基金
美国国家科学基金会;
关键词
Navier-Stokes equations for incompressible viscous fluids; Fluid-solid interaction; Stability; Steady bifurcation; RIGID-BODY; FLOW; EXISTENCE; MOTION; LIQUID;
D O I
10.1016/j.jde.2024.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study certain significant properties of the equilibrium configurations of a rigid body subject to an undamped elastic restoring force, in the stream of a viscous liquid in an unbounded 3D domain. The motion of the coupled system is driven by a uniform flow at spatial infinity, with constant dimensionless velocity lambda. We show that if lambda is below a critical value, lambda(c )(say), there is a unique and stable time-independent configuration, where the body is in equilibrium and the flow is steady. We also prove that, if lambda < lambda(c) , no oscillatory flow may occur. Successively, we investigate possible loss of uniqueness by providing necessary and sufficient conditions for the occurrence of a steady bifurcation at some lambda(s) >= lambda (c) . (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:324 / 367
页数:44
相关论文
共 50 条
  • [1] AN INVERSE FLUID-SOLID INTERACTION PROBLEM
    Monk, Peter
    Selgas, Virginia
    [J]. INVERSE PROBLEMS AND IMAGING, 2009, 3 (02) : 173 - 198
  • [2] An inverse problem for fluid-solid interaction
    Elschner, Johannes
    Hsiao, George C.
    Rathsfeld, Andreas
    [J]. INVERSE PROBLEMS AND IMAGING, 2008, 2 (01) : 83 - 119
  • [3] The fluid-solid interaction scattering problem with unknown buried objects
    Xiang, Jianli
    Yan, Guozheng
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (01): : 1 - 19
  • [4] THE FACTORIZATION METHOD FOR AN INVERSE FLUID-SOLID INTERACTION SCATTERING PROBLEM
    Kirsch, Andreas
    Ruiz, Albert
    [J]. INVERSE PROBLEMS AND IMAGING, 2012, 6 (04) : 681 - 695
  • [5] A boundary integral equation method for the fluid-solid interaction problem
    Sun, Yao
    Wang, Pan
    Lu, Xinru
    Chen, Bo
    [J]. COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (04): : 716 - 742
  • [6] ON DYNAMICAL THREE-DIMENSIONAL FLUID-SOLID INTERACTION PROBLEM
    Avalishvili, Gia
    Avalishvili, Mariam
    Gordeziani, David
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2008, 15 (04) : 601 - 618
  • [7] Simulating fluid-solid interaction
    Génevaux, O
    Habibi, A
    Dischler, JM
    [J]. GRAPHICS INTERFACE 2003, PROCEEDING, 2003, : 31 - 38
  • [8] Finite-element analysis of a static fluid-solid interaction problem
    Araya, Rodolfo
    Barrenechea, Gabriel R.
    Jaillet, Fabrice
    Rodriguez, Rodolfo
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 886 - 913
  • [9] Modified transmission eigenvalues for inverse scattering in a fluid-solid interaction problem
    Monk, Peter
    Selgas, Virginia
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (01)
  • [10] Local null controllability of a fluid-solid interaction problem in dimension 3
    Boulakia, M.
    Guerrero, S.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) : 825 - 856