Stability of equilibria and bifurcations for a fluid-solid interaction problem

被引:0
|
作者
Bonheure, Denis [1 ]
Galdi, Giovanni P. [2 ]
Gazzola, Filippo [3 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Blvd Triomphe 155, B-1050 Brussels, Belgium
[2] Univ Pittsburgh, Dipartment Mech Engn & Mat Sci, 4200 5th Ave, Pittsburgh, PA 15213 USA
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
基金
美国国家科学基金会;
关键词
Navier-Stokes equations for incompressible viscous fluids; Fluid-solid interaction; Stability; Steady bifurcation; RIGID-BODY; FLOW; EXISTENCE; MOTION; LIQUID;
D O I
10.1016/j.jde.2024.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study certain significant properties of the equilibrium configurations of a rigid body subject to an undamped elastic restoring force, in the stream of a viscous liquid in an unbounded 3D domain. The motion of the coupled system is driven by a uniform flow at spatial infinity, with constant dimensionless velocity lambda. We show that if lambda is below a critical value, lambda(c )(say), there is a unique and stable time-independent configuration, where the body is in equilibrium and the flow is steady. We also prove that, if lambda < lambda(c) , no oscillatory flow may occur. Successively, we investigate possible loss of uniqueness by providing necessary and sufficient conditions for the occurrence of a steady bifurcation at some lambda(s) >= lambda (c) . (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:324 / 367
页数:44
相关论文
共 50 条
  • [21] NEAR FIELD SAMPLING TYPE METHODS FOR THE INVERSE FLUID-SOLID INTERACTION PROBLEM
    Monk, Peter
    Selgas, Virginia
    [J]. INVERSE PROBLEMS AND IMAGING, 2011, 5 (02) : 465 - 483
  • [22] Analysis and finite element methods for a fluid-solid interaction problem in one dimension
    Makridakis, C
    Ihlenburg, F
    Babuska, I
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (08): : 1119 - 1141
  • [23] Characterization of partial derivatives with respect to material parameters in a fluid-solid interaction problem
    Azpiroz, Izar
    Barucq, Helene
    Djellouli, Rabia
    Ha Pham
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) : 903 - 927
  • [24] Stability and Detail Improvement Method for SPH Volume Maps Fluid-Solid Interaction
    Zhao J.
    Yuan H.
    Xu L.
    An Y.
    Tang C.
    Lyu M.
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (06): : 848 - 856
  • [25] A SPECTRAL PROBLEM ARISING IN FLUID-SOLID STRUCTURES
    CONCA, M
    VANNINATHAN, M
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 69 (02) : 215 - 242
  • [26] A rational spectral problem in fluid-solid vibration
    Voss, H
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2003, 16 : 94 - 106
  • [27] Modeling and simulation of the fluid-solid interaction in wetting
    Wolf, Fabiano G.
    dos Santos, Luis O. E.
    Philippi, Paulo C.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [28] Fluid-solid interaction analysis of torque converters
    Zhang Z.
    Hui J.
    Suo X.
    Zhang F.
    Lei J.
    [J]. High Technology Letters, 2019, 25 (03): : 239 - 244
  • [29] Multiscale Numerical Simulation of Fluid-Solid Interaction
    Inoue, Yohei
    Tanaka, Junji
    Kobayashi, Ryo
    Ogata, Shuji
    Gotoh, Toshiyuki
    [J]. MATERIALS TRANSACTIONS, 2008, 49 (11) : 2550 - 2558
  • [30] Fluid-solid interaction analysis of torque converters
    张泽宇
    Hui Jizhuang
    Suo Xuefeng
    Zhang Fuqiang
    Lei Jingyuan
    [J]. High Technology Letters, 2019, 25 (03) : 239 - 244