Spectral decomposition of Chebyshev maps

被引:4
|
作者
Qiao, B
Antoniou, I
机构
[1] INT SOLVAY INST PHYS & CHEM,B-1050 BRUSSELS,BELGIUM
[2] FREE UNIV BRUSSELS,B-1050 BRUSSELS,BELGIUM
来源
PHYSICA A | 1996年 / 233卷 / 1-2期
关键词
Chebyshev maps; spectral decomposition; Koopman operator; Frobenius-Perron operator;
D O I
10.1016/S0378-4371(96)00219-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a spectral decomposition of the Frobenius-Perron operator for the Chebyshev polynomials of the first kind. We defined a suitable dual pair or rigged Hilbert space which provides mathematical meaning to the spectral decomposition. The spectra of the even Chebyshev maps do not contain the odd powers of 1/m and the odd eigenfunctions are in the null space of the Frobenius-Perron operator. Moreover, the odd Chebyshev maps have degenerate spectra without Jordan blocks. The eigenvalues in the decompositions are the resonances of power spectrum and have magnitudes less than one as in the case of the family of Tent maps.
引用
收藏
页码:449 / 457
页数:9
相关论文
共 50 条
  • [41] Unwrapping magnetic resonance phase maps with Chebyshev polynomials
    Langley, Jason
    Zhao, Qun
    MAGNETIC RESONANCE IMAGING, 2009, 27 (09) : 1293 - 1301
  • [42] A lightweight encryption scheme using Chebyshev polynomial maps
    Sreedharan, Sujiya
    Eswaran, Chandra
    OPTIK, 2021, 240
  • [43] Public-key encryption based on Chebyshev maps
    Kocarev, L
    Tasev, Z
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III: GENERAL & NONLINEAR CIRCUITS AND SYSTEMS, 2003, : 28 - 31
  • [44] CHEBYSHEV SPECTRAL METHODS FOR COMPUTING CENTER MANIFOLDS
    Saito, Takeshi
    Yagasaki, Kazuyuki
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2021, 8 (02): : 165 - 181
  • [45] Numerical solution of high dimensional stationary Fokker-Planck equations via tensor decomposition and Chebyshev spectral differentiation
    Sun, Yifei
    Kumar, Mrinal
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (10) : 1960 - 1977
  • [46] Spectral density calculation by using the Chebyshev expansion
    Ikegami, T
    Iwata, S
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2002, 23 (02) : 310 - 318
  • [47] SPECTRAL DECOMPOSITION
    PARZYNSK.WR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 195 - &
  • [48] Reconstruction of Derivatives by a Truncated Chebyshev Spectral Method
    Zhao, Zhenyu
    Liu, Junfeng
    Qi, Jiejing
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL I, 2009, : 439 - +
  • [49] The Chebyshev spectral element approximation with exact quadratures
    Li, Yibiao
    Li, Xin Kai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 320 - 333
  • [50] SPECTRAL CHEBYSHEV COLLOCATION FOR THE POISSON AND BIHARMONIC EQUATIONS
    Bialecki, Bernard
    Karageorghis, Andreas
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05): : 2995 - 3019