Spectral decomposition of Chebyshev maps

被引:4
|
作者
Qiao, B
Antoniou, I
机构
[1] INT SOLVAY INST PHYS & CHEM,B-1050 BRUSSELS,BELGIUM
[2] FREE UNIV BRUSSELS,B-1050 BRUSSELS,BELGIUM
来源
PHYSICA A | 1996年 / 233卷 / 1-2期
关键词
Chebyshev maps; spectral decomposition; Koopman operator; Frobenius-Perron operator;
D O I
10.1016/S0378-4371(96)00219-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a spectral decomposition of the Frobenius-Perron operator for the Chebyshev polynomials of the first kind. We defined a suitable dual pair or rigged Hilbert space which provides mathematical meaning to the spectral decomposition. The spectra of the even Chebyshev maps do not contain the odd powers of 1/m and the odd eigenfunctions are in the null space of the Frobenius-Perron operator. Moreover, the odd Chebyshev maps have degenerate spectra without Jordan blocks. The eigenvalues in the decompositions are the resonances of power spectrum and have magnitudes less than one as in the case of the family of Tent maps.
引用
收藏
页码:449 / 457
页数:9
相关论文
共 50 条
  • [31] Superconvergence of a Chebyshev spectral collocation method
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 34 (03) : 237 - 246
  • [32] Chebyshev spectral variational integrator and applications
    Zhonggui Yi
    Baozeng Yue
    Mingle Deng
    Applied Mathematics and Mechanics, 2020, 41 : 753 - 768
  • [33] Chebyshev spectral method for superconductivity problems
    Sokolovsky, Vladimir
    Prigozhin, Leonid
    Kozyrev, Andrey B.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2020, 33 (08):
  • [34] Chebyshev spectral variational integrator and applications
    Yi, Zhonggui
    Yue, Baozeng
    Deng, Mingle
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2020, 41 (05) : 753 - 768
  • [35] Chebyshev spectral methods for radiative transfer
    Kim, AD
    Moscoso, M
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06): : 2074 - 2094
  • [36] Superconvergence of a Chebyshev Spectral Collocation Method
    Zhimin Zhang
    Journal of Scientific Computing, 2008, 34 : 237 - 246
  • [37] GENERALIZED CHEBYSHEV MAPS OF C2 AND THEIR PERTURBATIONS
    Uchimura, Keisuke
    OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (04) : 995 - 1017
  • [38] Scaling properties of invariant densities of coupled Chebyshev maps
    Groote, Stefan
    Beck, Christian
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2007, 22 (02): : 219 - 248
  • [39] EVALUATION OF SOMMERFELD INTEGRALS USING CHEBYSHEV DECOMPOSITION
    ANNAERT, G
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (02) : 159 - 164
  • [40] Lightweight Signcryption Scheme Based on Discrete Chebyshev Maps
    To Thi Kim Hue
    Thang Manh Hoang
    Braeken, An
    2017 12TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2017, : 43 - 47