Deformations of singular symplectic varieties and termination of the log minimal model program

被引:8
|
作者
Lehn, Christian [1 ]
Pacienza, Gianluca [2 ,3 ]
机构
[1] Tech Univ, Fac Math, Reichenhainer Str 39, D-09126 Chemnitz, Germany
[2] Univ Strasbourg, Inst Rech Math Avancee, 7 Rue Ren Descartes, F-67084 Strasbourg, France
[3] CNRS, 7 Rue Ren Descartes, F-67084 Strasbourg, France
来源
ALGEBRAIC GEOMETRY | 2016年 / 3卷 / 04期
关键词
DISCREPANCIES; DECOMPOSITION; MANIFOLDS;
D O I
10.14231/AG-2016-018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize Huybrechts' theorem on deformation equivalence of birational irreducible symplectic manifolds to the singular setting. More precisely, under suitable natural hypotheses, we show that two birational symplectic varieties are locally trivial deformations of each other. As an application we show the termination of any log minimal model program for a pair (X; Delta) of a projective irreducible symplectic manifold X and an effective R-divisor Delta. To prove this result we follow Shokurov's strategy and show that LSC and ACC for minimal log discrepancies hold for all the models appearing along any log MMP of the initial pair.
引用
收藏
页码:392 / 406
页数:15
相关论文
共 50 条
  • [21] Minimal model program for log canonical threefolds in positive characteristic
    Hashizume, Kenta
    Nakamura, Yusuke
    Tanaka, Hiromu
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (04) : 1003 - 1054
  • [22] SYMPLECTIC INVARIANCE OF UNIRULED AFFINE VARIETIES AND LOG KODAIRA DIMENSION
    Mclean, Mark
    DUKE MATHEMATICAL JOURNAL, 2014, 163 (10) : 1929 - 1964
  • [23] CHARACTERIZING SYMPLECTIC GRASSMANNIANS BY VARIETIES OF MINIMAL RATIONAL TANGENTS
    Hwang, Jun-Muk
    Li, Qifeng
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 119 (02) : 309 - 381
  • [24] The minimal model program for deformations of Hilbert schemes of points on the projective plane
    Li, Chunyi
    Zhao, Xiaolei
    ALGEBRAIC GEOMETRY, 2018, 5 (03): : 328 - 358
  • [25] The Morrison-Kawamata cone conjecture for singular symplectic varieties
    Lehn, Christian
    Mongardi, Giovanni
    Pacienza, Gianluca
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (04):
  • [26] The minimal model program for b-log canonical divisors and applications
    Daniel Chan
    Kenneth Chan
    Louis de Thanhoffer de Völcsey
    Colin Ingalls
    Kelly Jabbusch
    Sándor J. Kovács
    Rajesh Kulkarni
    Boris Lerner
    Basil Nanayakkara
    Shinnosuke Okawa
    Michel Van den Bergh
    Mathematische Zeitschrift, 2023, 303
  • [27] The minimal model program for b-log canonical divisors and applications
    Chan, Daniel
    Chan, Kenneth
    de Volcsey, Louis de Thanhoffer
    Ingalls, Colin
    Jabbusch, Kelly
    Kovacs, Sandor J.
    Kulkarni, Rajesh
    Lerner, Boris
    Nanayakkara, Basil
    Okawa, Shinnosuke
    Van den Bergh, Michel
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (04)
  • [29] EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE
    Birkar, Caucher
    Cascini, Paolo
    Hacon, Christopher D.
    McKernan, James
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) : 405 - 468
  • [30] An approach of the minimal model program for horospherical varieties via moment polytopes
    Pasquier, Boris
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 708 : 173 - 212