EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE

被引:728
|
作者
Birkar, Caucher [1 ]
Cascini, Paolo [2 ,3 ]
Hacon, Christopher D. [4 ]
McKernan, James [2 ,5 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Cambridge CB3 0WB, England
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[3] Univ London Imperial Coll Sci Technol & Med, London SW7 2A2, England
[4] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[5] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
TERMINATION; FLOPS;
D O I
10.1090/S0894-0347-09-00649-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:405 / 468
页数:64
相关论文
共 50 条
  • [1] EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE II
    Hacon, Christopher D.
    McKernan, James
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) : 469 - 490
  • [2] EXISTENCE OF MINIMAL MODELS FOR GENERAL TYPE VARIETIES
    Druel, Stephane
    ASTERISQUE, 2009, (326) : 1 - 38
  • [3] On existence of log minimal models
    Birkar, Caucher
    COMPOSITIO MATHEMATICA, 2010, 146 (04) : 919 - 928
  • [4] ON THE NUMBER AND BOUNDEDNESS OF LOG MINIMAL MODELS OF GENERAL TYPE
    Martinelli, Diletta
    Schreieder, Stefan
    Tasin, Luca
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (05): : 1183 - 1207
  • [5] On existence of log minimal models II
    Birkar, Caucher
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 658 : 99 - 113
  • [6] Boundedness of varieties of log general type
    Hacon, Christopher D.
    McKernan, James
    Xu, Chenyang
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 309 - 348
  • [7] On the Existence of Minimal Models for Log Canonical Pairs
    Lazic, Vladimir
    Tsakanikas, Nikolaos
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (02) : 311 - 339
  • [8] Hyperbolicity and Uniformity of Varieties of Log General type
    Ascher, Kenneth
    DeVleming, Kristin
    Turchet, Amos
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (04) : 2532 - 2581
  • [9] On existence of log minimal models and weak Zariski decompositions
    Birkar, Caucher
    MATHEMATISCHE ANNALEN, 2012, 354 (02) : 787 - 799
  • [10] On existence of log minimal models and weak Zariski decompositions
    Caucher Birkar
    Mathematische Annalen, 2012, 354 : 787 - 799