Stable NLS solitons in a cubic-quintic medium with a delta-function potential

被引:13
|
作者
Genoud, Francois [1 ]
Malomed, Boris A. [2 ]
Weishaeupl, Rada M. [1 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
关键词
Nonlinear Schrodinger equation; Cubic-quintic nonlinearity; Trapping delta potential; Bifurcation; Stability; NONLINEAR SCHRODINGER-EQUATION; STANDING WAVES; ORDER NONLINEARITIES; ORBITAL STABILITY; SOLITARY WAVES; GROUND-STATE; INSTABILITY;
D O I
10.1016/j.na.2015.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the one-dimensional nonlinear Schrodinger equation with the cubic-quintic combination of attractive and repulsive nonlinearities, and a trapping potential represented by a delta-function. We determine all bound states with a positive soliton profile through explicit formulas and, using bifurcation theory, we describe their behavior with respect to the propagation constant. This information is used to prove their stability by means of the rigorous theory of orbital stability of Hamiltonian systems. The presence of the trapping potential gives rise to a regime where two stable bound states coexist, with different powers and same propagation constant. (C) 2015 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:28 / 50
页数:23
相关论文
共 50 条
  • [41] Lattice solitons supported by competing cubic-quintic nonlinearity
    Wang, JD
    Ye, FW
    Dong, LW
    Cai, T
    Li, YP
    PHYSICS LETTERS A, 2005, 339 (1-2) : 74 - 82
  • [42] Small data scattering of the inhomogeneous cubic-quintic NLS in 2 dimensions
    Cho, Yonggeun
    Lee, Kiyeon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 188 : 142 - 157
  • [44] Asymptotic Formula for "Transparent Points" for Cubic-Quintic Discrete NLS Equation
    Alfimov, G. L.
    Titov, R. R.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2019, 40 (05) : 452 - 466
  • [45] On the Existence of Dark Solitons in a Cubic-Quintic Nonlinear Schrödinger Equation with a Periodic Potential
    Pedro J. Torres
    Vladimir V. Konotop
    Communications in Mathematical Physics, 2008, 282 : 1 - 9
  • [46] Elliptical and rectangular solitons in media with competing cubic-quintic nonlinearities
    Zeng, Liangwei
    Belic, Milivoj R.
    Mihalache, Dumitru
    Zhu, Xing
    CHAOS SOLITONS & FRACTALS, 2024, 181
  • [47] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [48] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    CHINESE PHYSICS B, 2012, 21 (05)
  • [49] Interactions of three-dimensional solitons in the cubic-quintic model
    Burlak, Gennadiy
    Malomed, Boris A.
    CHAOS, 2018, 28 (06)
  • [50] Nonlocal dark solitons under competing cubic-quintic nonlinearities
    Chen, L.
    Wang, Q.
    Shen, M.
    Zhao, H.
    Lin, Y. -Y.
    Jeng, C. -C.
    Lee, R. -K.
    Krolikowski, W.
    OPTICS LETTERS, 2013, 38 (01) : 13 - 15