Metallic nanostructures for light trapping in energy-harvesting devices

被引:473
|
作者
Guo, Chuan Fei [1 ,2 ]
Sun, Tianyi [1 ,2 ]
Cao, Feng [1 ,2 ]
Liu, Qian [3 ]
Ren, Zhifeng [1 ,2 ]
机构
[1] Univ Houston, Dept Phys, Houston, TX 77204 USA
[2] Univ Houston, TcSUH, Houston, TX 77204 USA
[3] Natl Ctr Nanosci & Technol China, Beijing 100190, Peoples R China
来源
LIGHT-SCIENCE & APPLICATIONS | 2014年 / 3卷
关键词
conversion efficiency; light trapping; photovoltaics; plasmonics; solar absorber; SENSITIZED SOLAR-CELLS; ABSORPTION ENHANCEMENT; OPTICAL-PROPERTIES; NEGATIVE-INDEX; THERMAL-STABILITY; COATINGS; METAMATERIAL; TRANSPARENT; PLASMONICS; REFRACTION;
D O I
10.1038/lsa.2014.42
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Solar energy is abundant and environmentally friendly. Light trapping in solar-energy-harvesting devices or structures is of critical importance. This article reviews light trapping with metallic nanostructures for thin film solar cells and selective solar absorbers. The metallic nanostructures can either be used in reducing material thickness and device cost or in improving light absorbance and thereby improving conversion efficiency. The metallic nanostructures can contribute to light trapping by scattering and increasing the path length of light, by generating strong electromagnetic field in the active layer, or by multiple reflections/absorptions. We have also discussed the adverse effect of metallic nanostructures and how to solve these problems and take full advantage of the light-trapping effect.
引用
收藏
页码:e161 / e161
页数:12
相关论文
共 50 条
  • [21] Energy-Harvesting Systems
    不详
    IEEE MICRO, 2016, 36 (03) : 73 - 75
  • [22] Energy-harvesting clothes
    Hatcher, Hannah
    NATURE REVIEWS MATERIALS, 2022, 7 (04) : 256 - 256
  • [23] Metallic nanostructures inclusion to improve energy harvesting in silicon
    Marques Lameirinhas R.A.
    P. Correia V. Bernardo C.
    N. Torres J.P.
    Baptista A.
    Marques Martins M.J.
    Optical Materials: X, 2024, 22
  • [24] Energy-harvesting clothes
    Hannah Hatcher
    Nature Reviews Materials, 2022, 7 : 256 - 256
  • [25] Energy-Harvesting Microsystems
    Rincon-Mora, Gabriel A.
    2015 International symposium on VLSI Design, Automation and Test (VLSI-DAT), 2015,
  • [26] An Energy-Aware Task Scheduler for Energy-Harvesting Batteryless IoT Devices
    Sabovic, Adnan
    Sultania, Ashish Kumar
    Delgado, Carmen
    De Roeck, Lander
    Famaey, Jeroen
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (22) : 23097 - 23114
  • [27] Energy-interference-free System and Toolchain Support for Energy-harvesting Devices
    Colin, Alexei
    Sample, Alanson P.
    Lucia, Brandon
    2015 INTERNATIONAL CONFERENCE ON COMPILERS, ARCHITECTURE AND SYNTHESIS FOR EMBEDDED SYSTEMS (CASES), 2015, : 35 - 36
  • [28] Bonding of dissimilar semiconductor materials for energy-harvesting and energy-saving devices
    Shigekawa N.
    Shigekawa, Naoteru, 2017, Vacuum Society of Japan (60) : 421 - 427
  • [29] Dynamic Task-based Intermittent Execution for Energy-harvesting Devices
    Majid, Amjad Yousef
    Delle Donne, Carlo
    Maeng, Kiwan
    Colin, Alexei
    Yildirim, Kasim Sinan
    Lucia, Brandon
    Pawelczak, Przemyslaw
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2020, 16 (01)
  • [30] A Two-Port Nonlinear Model for Magnetoelastic Energy-Harvesting Devices
    Davino, Daniele
    Giustiniani, Alessandro
    Visone, Ciro
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (06) : 2556 - 2564