Closedness of the Set of Extreme Points in Calderon-Lozanovskii Spaces

被引:0
|
作者
Kasior, Ewa [1 ]
Wisla, Marek [2 ]
机构
[1] Univ Szczecin, Inst Math, PL-70451 Szczecin 3, Poland
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
Calderon-Lozanovskii spaces; extreme points; compact operators; Orlicz spaces; Kothe spaces; ORLICZ SPACES; UNIFORM ROTUNDITY; MONOTONICITY; NORM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known (see [1]) that a compact linear operator from a Banach space X into the space of continuous functions C(Z,R) is extreme provided it is nice, i.e. T*(Z) subset of Ext B(X*), where Z is a compact Hausdorff space and T* : Z -> X* is a continuous function defined by T*(z)(x) = T(x)(z). The nice operator condition can be weakened as long as the set of extreme points Ext B(X*) is closed, namely it suffices to assume than T*(Z(0)) subset of Ext B(X*) for some dense subset Z(0) subset of Z in that case. The aim of this paper is to characterize the closedness of the set of extreme points of the unit ball of Calderon-Lozanovskii spaces E-phi generated by the Kothe space E and the Orlicz function phi. The main theorem of the paper (Theorem 2.14) gives conditions under which the closedness of the set Ext B(E-phi) is equivalent to the closedness of the set of extreme points of the unit ball of the corresponding Kothe space E.
引用
收藏
页码:401 / 413
页数:13
相关论文
共 50 条
  • [41] Extreme points in minimal spaces
    Alimohammady, M.
    Roohi, M.
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1480 - 1485
  • [42] METRIC SPACES OF EXTREME POINTS
    Manes, Ernie
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 1823 - 1832
  • [43] Extreme points in spaces of polynomials
    Dyakonov, KM
    MATHEMATICAL RESEARCH LETTERS, 2003, 10 (5-6) : 717 - 728
  • [44] Extreme points of the Harsanyi set and the Weber set
    Xu, Genjiu
    Driessen, Theo S. H.
    Su, Jun
    Sun, Hao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (02) : 678 - 698
  • [45] ON THE EXTREME POINTS AND STRONGLY EXTREME POINTS IN KOTHE-BOCHNER SPACES
    Hou, Zhentao
    Pan, Jinghong
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2012, 92 (106): : 139 - 143
  • [46] Extreme Points and Strongly Extreme Points of Musielak–Orlicz Sequences Spaces
    Xin Bo Liu
    Ting Fu Wang
    Fei Fei Yu
    Acta Mathematica Sinica, 2005, 21 : 267 - 278
  • [47] Extreme Points and Strongly Extreme Points of Musielak-Orlicz Sequences Spaces
    Xin Bo LIU Department of Mathematics
    Acta Mathematica Sinica(English Series), 2005, 21 (02) : 267 - 278
  • [48] Extreme points and strongly extreme points of Musielak-Orlicz sequences spaces
    Liu, XB
    Wang, TF
    Yu, FF
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (02) : 267 - 278
  • [49] Extreme points and strongly extreme points in Orlicz spaces equipped with the Orlicz norm
    Cui, Y
    Hudzik, H
    Pluciennik, R
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (04): : 789 - 817
  • [50] Extreme points of the set of Banach limits
    Semenov, E.
    Sukochev, F.
    POSITIVITY, 2013, 17 (01) : 163 - 170