Closedness of the Set of Extreme Points in Calderon-Lozanovskii Spaces

被引:0
|
作者
Kasior, Ewa [1 ]
Wisla, Marek [2 ]
机构
[1] Univ Szczecin, Inst Math, PL-70451 Szczecin 3, Poland
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
Calderon-Lozanovskii spaces; extreme points; compact operators; Orlicz spaces; Kothe spaces; ORLICZ SPACES; UNIFORM ROTUNDITY; MONOTONICITY; NORM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known (see [1]) that a compact linear operator from a Banach space X into the space of continuous functions C(Z,R) is extreme provided it is nice, i.e. T*(Z) subset of Ext B(X*), where Z is a compact Hausdorff space and T* : Z -> X* is a continuous function defined by T*(z)(x) = T(x)(z). The nice operator condition can be weakened as long as the set of extreme points Ext B(X*) is closed, namely it suffices to assume than T*(Z(0)) subset of Ext B(X*) for some dense subset Z(0) subset of Z in that case. The aim of this paper is to characterize the closedness of the set of extreme points of the unit ball of Calderon-Lozanovskii spaces E-phi generated by the Kothe space E and the Orlicz function phi. The main theorem of the paper (Theorem 2.14) gives conditions under which the closedness of the set Ext B(E-phi) is equivalent to the closedness of the set of extreme points of the unit ball of the corresponding Kothe space E.
引用
收藏
页码:401 / 413
页数:13
相关论文
共 50 条
  • [21] Geometric properties of some Calderon-Lozanovskii spaces and Orlicz-Lorentz spaces
    Hudzik, H
    Kaminska, A
    Mastylo, M
    HOUSTON JOURNAL OF MATHEMATICS, 1996, 22 (03): : 639 - 663
  • [22] Characterization of subdiagonal algebras on noncom mutative Calderon-Lozanovskii spaces
    Shao, Jingjing
    Han, Yazhou
    ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1825 - 1831
  • [23] Copies of l∞ in Quasi-normed Calderon-Lozanovskii Spaces
    Foralewski, Pawel
    Hudzik, Henryk
    Kolwicz, Pawel
    RESULTS IN MATHEMATICS, 2025, 80 (01)
  • [24] LOCAL Δ2E CONDITION IN GENERALIZED CALDERON-LOZANOVSKII SPACES
    Kolwicz, Pawel
    Panfil, Agata
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (01): : 259 - 282
  • [25] On some geometrical and topological properties of generalized Calderon-Lozanovskii sequence spaces
    Foralewski, P
    Hudzik, H
    HOUSTON JOURNAL OF MATHEMATICS, 1999, 25 (03): : 531 - 542
  • [26] Sharpness of the Calderon-Lozanovskii interpolation construction
    Ovchinnikov, VI
    Popov, YI
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2006, 40 (01) : 66 - 69
  • [27] Noncommutative Yosida-Hewitt theorem in noncommutative Calderon-Lozanovskii spaces
    Han, Yazhou
    Shao, Jingjing
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (03) : 1258 - 1280
  • [28] CLOSEDNESS OF THE SET OF EXTREME-POINTS IN ORLICZ SPACES
    SUAREZGRANERO, A
    WISLA, M
    MATHEMATISCHE NACHRICHTEN, 1992, 157 : 319 - 334
  • [29] TOPOLOGICAL AND GEOMETRICAL STRUCTURE OF CALDERON-LOZANOVSKII CONSTRUCTION
    Kolwicz, Pawel
    Lesnik, Karol
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (01): : 175 - 196
  • [30] CALDERON-LOZANOVSKII INTERPOLATION ON QUASI-BANACH LATTICES
    Raynaud, Yves
    Tradacete, Pedro
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (02): : 294 - 313