SPATIO-SPECTRAL RECONSTRUCTION OF THE MULTISPECTRAL DATACUBE USING SPARSE RECOVERY

被引:0
|
作者
Parmar, Manu [1 ]
Lansel, Steven [1 ]
Wandell, Brian A. [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Psychol, Stanford, CA 94305 USA
来源
2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5 | 2008年
关键词
Multispectral imaging; sparse recovery;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multispectral scene information is useful for radiometric graphics, material identification and imaging systems simulation. The multispectral scene can be described as a datacube, which is a 3D representation of energy at multiple wavelength samples at each scene spatial location. Typically, multispectral scene data are acquired using costly methods that either employ tunable filters or light sources to capture multiple narrow-bands of the spectrum at each spatial point. In this paper, we present new computational methods that estimate the datacube from measurements with a conventional digital camera. Existing methods reconstruct spectra at single locations independently of their neighbors. In contrast, we present a method that jointly recovers the spatio-spectral datacube by exploiting the data sparsity in a transform representation.
引用
收藏
页码:473 / 476
页数:4
相关论文
共 50 条
  • [41] Supervised spatio-spectral classification of fused images using superpixels
    Sanchez, Karen
    Hinojosa, Carlos
    Arguello, Henry
    APPLIED OPTICS, 2019, 58 (07) : B9 - B18
  • [42] Hyperspectral Image Denoising Using Spatio-Spectral Total Variation
    Aggarwal, Hemant Kumar
    Majumdar, Angshul
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 442 - 446
  • [43] Hyperspectral BSS Using GMCA With Spatio-Spectral Sparsity Constraints
    Moudden, Yassir
    Bobin, Jerome
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) : 872 - 879
  • [44] Measuring spatio-temporal couplings using modal spatio-spectral wavefront retrieval
    Weisse, N.
    Esslinger, J.
    Howard, S.
    Foerster, F. M.
    Haberstroh, F.
    Doyle, L.
    Norreys, P.
    Schreiber, J.
    Karsch, S.
    Dopp, A.
    OPTICS EXPRESS, 2023, 31 (12) : 19733 - 19745
  • [45] Mutual information-based optimization of sparse spatio-spectral filters in brain–computer interface
    Mahnaz Arvaneh
    Cuntai Guan
    Kai Keng Ang
    Chai Quek
    Neural Computing and Applications, 2014, 25 : 625 - 634
  • [46] Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation
    Li, Ziwei
    Suo, Jinli
    Hu, Xuemei
    Deng, Chao
    Fan, Jingtao
    Dai, Qionghai
    SCIENTIFIC REPORTS, 2017, 7
  • [47] Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation
    Ziwei Li
    Jinli Suo
    Xuemei Hu
    Chao Deng
    Jingtao Fan
    Qionghai Dai
    Scientific Reports, 7
  • [48] Greedy solutions for the construction of sparse spatial and spatio-spectral filters in brain computer interface applications
    Goksu, Fikri
    Ince, Nuri F.
    Tewfik, Ahmed H.
    NEUROCOMPUTING, 2013, 108 : 69 - 78
  • [49] Spatio-spectral couplings in optical parametric amplifiers
    De Andres, Aitor
    Jolly, Spencer W.
    Fischer, Peter
    Muschet, Alexander A.
    Schnur, Fritz
    Veisz, Laszlo
    OPTICS EXPRESS, 2023, 31 (08) : 12036 - 12048
  • [50] Spatio-Spectral Compression and Analysis of Hyperspectral Images using Tensor Decomposition
    Renu, R. K.
    Sowmya, V
    Soman, K. P.
    2018 TWENTY FOURTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2018,