SPATIO-SPECTRAL RECONSTRUCTION OF THE MULTISPECTRAL DATACUBE USING SPARSE RECOVERY

被引:0
|
作者
Parmar, Manu [1 ]
Lansel, Steven [1 ]
Wandell, Brian A. [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Psychol, Stanford, CA 94305 USA
来源
2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5 | 2008年
关键词
Multispectral imaging; sparse recovery;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multispectral scene information is useful for radiometric graphics, material identification and imaging systems simulation. The multispectral scene can be described as a datacube, which is a 3D representation of energy at multiple wavelength samples at each scene spatial location. Typically, multispectral scene data are acquired using costly methods that either employ tunable filters or light sources to capture multiple narrow-bands of the spectrum at each spatial point. In this paper, we present new computational methods that estimate the datacube from measurements with a conventional digital camera. Existing methods reconstruct spectra at single locations independently of their neighbors. In contrast, we present a method that jointly recovers the spatio-spectral datacube by exploiting the data sparsity in a transform representation.
引用
收藏
页码:473 / 476
页数:4
相关论文
共 50 条
  • [1] Direct spatio-spectral datacube reconstruction from raw data using a spatially adaptive spatio-spectral basis
    Monno, Yusuke
    Tanaka, Masayuki
    Okutomi, Masatoshi
    DIGITAL PHOTOGRAPHY IX, 2013, 8660
  • [2] Spatio-spectral characterization of broadband fields using multispectral imaging
    Dorrer, C.
    Bahk, S-W
    OPTICS EXPRESS, 2018, 26 (25): : 33387 - 33399
  • [3] Spatio-Spectral Multichannel Reconstruction from few Low-Resolution Multispectral Data
    Hadj-Youcef, M. A.
    Orieux, F.
    Fraysse, A.
    Abergel, A.
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1980 - 1984
  • [4] Comparative spatio-spectral heterogeneity analysis using multispectral and hyperspectral airborne images
    Qiu Bingwen
    Zeng Canying
    Chen Chongcheng
    GEO-SPATIAL INFORMATION SCIENCE, 2013, 16 (02) : 83 - 90
  • [5] Introduction of Spatio-Spectral Indices for Using Spatial Data in Multispectral Image Classification
    Ashoori, Hamed
    Zoej, Mohamad Javad Valadan
    Sahebi, Mahmod Reza
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 1003 - 1017
  • [6] Introduction of Spatio-Spectral Indices for Using Spatial Data in Multispectral Image Classification
    Hamed Ashoori
    Mohamad Javad Valadan Zoej
    Mahmod Reza Sahebi
    Journal of the Indian Society of Remote Sensing, 2019, 47 : 1003 - 1017
  • [7] Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation
    Urban, Philipp
    Rosen, Mitchell R.
    Berns, Roy S.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (08) : 1865 - 1875
  • [8] Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation
    Urban, Philipp
    Rosen, Mitchell R.
    Berns, Roy S.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26 (08): : 1866 - 1876
  • [9] Spatio-spectral Data Reconstruction in Terahertz Imaging
    Abolghasemi, Vahid
    Ferdowsi, Saideh
    Shen, Hao
    Shen, Yaochun
    Gan, Lu
    2014 7th International Symposium on Telecommunications (IST), 2014, : 129 - 133
  • [10] Spatio-spectral Image Reconstruction Using Non-local Filtering
    Sippel, Frank
    Seiler, Juergen
    Kaup, Andre
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,