Recent Results on the Dynamics of Higher-dimensional Henon Maps

被引:4
|
作者
Anastassiou, Stavros [1 ]
Bountis, Anastasios [2 ]
Backer, Arnd [3 ,4 ]
机构
[1] Univ Patras, Dept Math, CRANS, GR-26500 Rion, Greece
[2] Nazarbayev Univ, Sch Sci & Technol, Dept Math, Kabanbay Batyr 53, Astana 010000, Kazakhstan
[3] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Ctr Dynam, D-01062 Dresden, Germany
来源
REGULAR & CHAOTIC DYNAMICS | 2018年 / 23卷 / 02期
关键词
invariant manifolds; parametrization method; solenoid attractor; hyperbolic sets; HOMOCLINIC ORBITS; (UN)STABLE MANIFOLDS; HYPERBOLIC ATTRACTOR; WILLIAMS TYPE; COMPUTATION; DIFFEOMORPHISMS; SMALE; 2D;
D O I
10.1134/S156035471802003X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate different aspects of chaotic dynamics in Henon maps of dimension higher than 2. First, we review recent results on the existence of homoclinic points in 2-d and 4-d such maps, by demonstrating how they can be located with great accuracy using the parametrization method. Then we turn our attention to perturbations of Henon maps by an angle variable that are defined on the solid torus, and prove the existence of uniformly hyperbolic solenoid attractors for an open set of parameters. We thus argue that higher-dimensional Henon maps exhibit a rich variety of chaotic behavior that deserves to be further studied in a systematic way.
引用
收藏
页码:161 / 177
页数:17
相关论文
共 50 条
  • [31] Low-dimensional dynamics in observables from complex and higher-dimensional systems
    Baptista, MS
    Caldas, IL
    Baptista, MS
    Baptista, CS
    Ferreira, AA
    Heller, MVAP
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 287 (1-2) : 91 - 99
  • [32] Dynamics of transcendental Henon maps-II
    Arosio, Leandro
    Benini, Anna Miriam
    Fornaess, John Erik
    Peters, Han
    MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 975 - 999
  • [33] Spectral properties and dynamics of quantized Henon maps
    Weickert, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (12) : 4951 - 4968
  • [34] Chaotic dynamics of three-dimensional Henon maps that originate from a homoclinic bifurcation
    Gonchenko, S. V.
    Meiss, J. D.
    Ovsyannikov, I. I.
    REGULAR & CHAOTIC DYNAMICS, 2006, 11 (02): : 191 - 212
  • [35] DYNAMICS OF ASYMMETRIC COUPLINGS OF TWO HENON MAPS
    Casas, Gabriela A.
    Rech, Paulo C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 153 - 160
  • [36] Dynamics of unidirectionally coupled bistable Henon maps
    Sausedo-Solorio, J. M.
    Pisarchik, A. N.
    PHYSICS LETTERS A, 2011, 375 (42) : 3677 - 3681
  • [37] Higher-dimensional origami constructions
    Banerjee, Deveena R.
    Chari, Sara
    Salerno, Adriana
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (02): : 297 - 312
  • [38] Languages of higher-dimensional automata
    Fahrenberg, Uli
    Johansen, Christian
    Struth, Georg
    Ziemianski, Krzysztof
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2021, 31 (05) : 575 - 613
  • [39] HIGHER-DIMENSIONAL FIELD THEORY
    AHNER, HF
    ANDERSON, JL
    PHYSICAL REVIEW D, 1970, 1 (02): : 488 - &
  • [40] HIGHER-DIMENSIONAL WHITE HOLES
    GURIN, VS
    TROFIMENKO, AP
    PRAMANA-JOURNAL OF PHYSICS, 1991, 36 (05): : 511 - 518