Low-dimensional dynamics in observables from complex and higher-dimensional systems

被引:11
|
作者
Baptista, MS
Caldas, IL
Baptista, MS
Baptista, CS
Ferreira, AA
Heller, MVAP
机构
[1] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil
[2] Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-05599970 Sao Paulo, Brazil
[3] Univ Sao Paulo, Inst Ciencias Biomed, BR-05422970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
chaos; econophysics; stock market; DNA; turbulence; modeling;
D O I
10.1016/S0378-4371(00)00448-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze fluctuating observables of high-dimensional systems as the New York Stock Market S&P 500 index, the amino-acid sequence in the M. genitalium DNA, the maximum temperature of the San Francisco Bay area, and the toroidal magneto plasma potential. The probability measures of these fluctuations are obtained by the statistical analysis of a rescaling combination of the first Poincare return time of a low-dimensional chaotic system. This result indicates that it is possible to use a measure of a low-dimensional chaotic attractor to describe a measure of these complex systems. Moreover, within this description we determine scaling power laws for average measurements of the analyzed fluctuations. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 50 条
  • [1] On higher-dimensional dynamics
    Wesson, PS
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2423 - 2438
  • [2] From low-dimensional manganese(II) azido motifs to higher-dimensional materials: Structure and magnetic properties
    Gao, EQ
    Cheng, AL
    Xu, YX
    He, MY
    Yan, CH
    INORGANIC CHEMISTRY, 2005, 44 (24) : 8822 - 8835
  • [3] Dynamics of low-dimensional dipolar systems
    Sun, JM
    Luo, WL
    PHYSICAL REVIEW E, 1997, 56 (04): : 3986 - 3992
  • [4] Dynamics of low-dimensional systems PREFACE
    Bernasconi, M.
    Miret-Artes, S.
    Toennies, J. P.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (10)
  • [5] Nonequilibrium dynamics in low-dimensional systems
    Evans, MR
    Blythe, RA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 313 (1-2) : 110 - 152
  • [6] HIGHER-DIMENSIONAL PERIODIC SYSTEMS
    CHAMBERS, CM
    JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (11) : 1664 - &
  • [7] Signature of Low-Dimensional Diffusion in Complex Systems
    Malikova, N.
    Longeville, S.
    Zanotti, J. -M.
    Dubois, E.
    Marry, V.
    Turq, P.
    Ollivier, J.
    PHYSICAL REVIEW LETTERS, 2008, 101 (26)
  • [8] Charge dynamics in low-dimensional quantum systems
    Ruzicka, B
    Vescoli, V
    Degiorgi, L
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (34) : S2501 - S2511
  • [9] Analytical studies on the dynamics of higher-dimensional nonlinear circuit systems
    Sivaganesh, G.
    Srinivasan, K.
    Arulgnanam, A.
    PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (04):
  • [10] Analytical studies on the dynamics of higher-dimensional nonlinear circuit systems
    G Sivaganesh
    K Srinivasan
    A Arulgnanam
    Pramana, 96