Low-dimensional dynamics in observables from complex and higher-dimensional systems

被引:11
|
作者
Baptista, MS
Caldas, IL
Baptista, MS
Baptista, CS
Ferreira, AA
Heller, MVAP
机构
[1] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil
[2] Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-05599970 Sao Paulo, Brazil
[3] Univ Sao Paulo, Inst Ciencias Biomed, BR-05422970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
chaos; econophysics; stock market; DNA; turbulence; modeling;
D O I
10.1016/S0378-4371(00)00448-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze fluctuating observables of high-dimensional systems as the New York Stock Market S&P 500 index, the amino-acid sequence in the M. genitalium DNA, the maximum temperature of the San Francisco Bay area, and the toroidal magneto plasma potential. The probability measures of these fluctuations are obtained by the statistical analysis of a rescaling combination of the first Poincare return time of a low-dimensional chaotic system. This result indicates that it is possible to use a measure of a low-dimensional chaotic attractor to describe a measure of these complex systems. Moreover, within this description we determine scaling power laws for average measurements of the analyzed fluctuations. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 50 条
  • [31] Photoemission in low-dimensional systems
    Grioni, M
    Berger, H
    Garnier, M
    Bommeli, F
    Degiorgi, L
    Schlenker, C
    PHYSICA SCRIPTA, 1996, T66 : 172 - 176
  • [32] Magnetospheric dynamics from a low-dimensional nonlinear dynamics model
    Doxas, I
    Horton, W
    PHYSICS OF PLASMAS, 1999, 6 (05) : 2198 - 2204
  • [33] Low-Dimensional Magnetic Systems
    Zivieri, Roberto
    Consolo, Giancarlo
    Martinez, Eduardo
    Akerman, Johan
    ADVANCES IN CONDENSED MATTER PHYSICS, 2012, 2012
  • [34] Phonons in low-dimensional systems
    Mayer, AP
    Bonart, D
    Strauch, D
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (05) : S395 - S427
  • [35] COSMOLOGY FROM HIGHER-DIMENSIONAL GRAVITY
    SHAFI, Q
    WETTERICH, C
    PHYSICS LETTERS B, 1983, 129 (06) : 387 - 391
  • [36] Geometric chained inequalities for higher-dimensional systems
    Zukowski, Marek
    Dutta, Arijit
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [37] Rigidity of higher-dimensional conformal Anosov systems
    De la Llave, R
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 1845 - 1870
  • [38] NONSTATISTICAL BEHAVIOR OF HIGHER-DIMENSIONAL COUPLED SYSTEMS
    SINHA, S
    BISWAS, D
    AZAM, M
    LAWANDE, SV
    PHYSICAL REVIEW A, 1992, 46 (06): : 3193 - 3197
  • [39] Entanglement concentration for higher-dimensional quantum systems
    Yao, CM
    Gu, YJ
    Ye, L
    Guo, GC
    CHINESE PHYSICS LETTERS, 2002, 19 (09) : 1242 - 1244
  • [40] Periodic solutions of higher-dimensional discrete systems
    Zhou, Z
    Yu, JS
    Guo, ZM
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 1013 - 1022