Training machine-learning potentials for crystal structure prediction using disordered structures

被引:21
|
作者
Hong, Changho [1 ,2 ]
Choi, Jeong Min [1 ,2 ]
Jeong, Wonseok [1 ,2 ]
Kang, Sungwoo [1 ,2 ]
Ju, Suyeon [1 ,2 ]
Lee, Kyeongpung [1 ,2 ]
Jung, Jisu [1 ,2 ]
Youn, Yong [3 ,4 ]
Han, Seungwu [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Adv Mat, Seoul 08826, South Korea
[3] Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
新加坡国家研究基金会;
关键词
IONIC-CONDUCTIVITY; GLOBAL MINIMUM; PHASES; FORSTERITE; STABILITY; ALGORITHM; CHEMISTRY; DISCOVERY; SEARCHES; CARBON;
D O I
10.1103/PhysRevB.102.224104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Prediction of the stable crystal structure for multinary (ternary or higher) compounds with unexplored compositions demands fast and accurate evaluation of free energies in exploring the vast configurational space. The machine-learning potential such as the neural network potential (NNP) is poised to meet this requirement but a dearth of information on the crystal structure poses a challenge in choosing training sets. Herein we propose constructing the training set from density functional theory (DFT)-based dynamical trajectories of liquid and quenched amorphous phases, which does not require any preceding information on material structures except for the chemical composition. To demonstrate suitability of the trained NNP in the crystal structure prediction, we compare NNP and DFT energies for Ba2AgSi3, Mg2SiO4, LiAlCl4, and InTe2O5 F over experimental phases as well as low-energy crystal structures that are generated theoretically. For every material, we find strong correlations between DFT and NNP energies, ensuring that the NNPs can properly rank energies among low-energy crystalline structures. We also find that the evolutionary search using the NNPs can identify low-energy metastable phases more efficiently than the DFT-based approach. By proposing a way to developing reliable machine-learning potentials for the crystal structure prediction, this work paves the way to identifying unexplored multinary phases efficiently.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Stress prediction using machine-learning techniques on physiological signals
    Tu Thanh Do
    Luan Van Tran
    Tho Anh Le
    Thao Mai Thi Le
    Lan-Anh Hoang Duong
    Thuong Hoai Nguyen
    Duy The Phan
    Toi Van Vo
    Huong Thanh Thi Ha
    [J]. 2023 1ST INTERNATIONAL CONFERENCE ON HEALTH SCIENCE AND TECHNOLOGY, ICHST 2023, 2023,
  • [22] PREDICTION OF SUPERCONDUCTING TRANSITION TEMPERATURE USING A MACHINE-LEARNING METHOD
    Liu, Yao
    Zhang, Huiran
    Xu, Yan
    Li, Shengzhou
    Dai, Dongbo
    Li, Chengfan
    Ding, Guangtai
    Shen, Wenfeng
    Qian, Quan
    [J]. MATERIALI IN TEHNOLOGIJE, 2018, 52 (05): : 639 - 643
  • [23] Risk estimation and risk prediction using machine-learning methods
    Kruppa, Jochen
    Ziegler, Andreas
    Koenig, Inke R.
    [J]. HUMAN GENETICS, 2012, 131 (10) : 1639 - 1654
  • [24] Risk estimation and risk prediction using machine-learning methods
    Jochen Kruppa
    Andreas Ziegler
    Inke R. König
    [J]. Human Genetics, 2012, 131 : 1639 - 1654
  • [25] Prediction of cholinergic compounds by machine-learning
    Wijeyesakere S.J.
    Wilson D.M.
    Sue Marty M.
    [J]. Wilson, Daniel M. (MWilson3@dow.com), 1600, Elsevier B.V. (13):
  • [26] Using Machine-Learning for Prediction of the Response to Cardiac Resynchronization Therapy
    Howell, Stacey J.
    Stivland, Tim
    Stein, Kenneth
    Ellenbogen, Kenneth A.
    Tereshchenko, Larisa G.
    [J]. JACC-CLINICAL ELECTROPHYSIOLOGY, 2021, 7 (12) : 1505 - 1515
  • [27] Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods
    Cubuk, E. D.
    Schoenholz, S. S.
    Rieser, J. M.
    Malone, B. D.
    Rottler, J.
    Durian, D. J.
    Kaxiras, E.
    Liu, A. J.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [28] Machine-learning correction to density-functional crystal structure optimization
    Hussein, Robert
    Schmidt, Jonathan
    Barros, Tomas
    Marques, Miguel A. L.
    Botti, Silvana
    [J]. MRS BULLETIN, 2022, 47 (08) : 765 - 771
  • [29] Local-environment-guided selection of atomic structures for the development of machine-learning potentials
    Li, Renzhe
    Zhou, Chuan
    Singh, Akksay
    Pei, Yong
    Henkelman, Graeme
    Li, Lei
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (07):
  • [30] Prediction of pyrazinamide resistance in Mycobacterium tuberculosis using structure-based machine-learning approaches
    Carter, Joshua J.
    Walker, Timothy M.
    Walker, A. Sarah
    Whitfield, Michael G.
    Morlock, Glenn P.
    Lynch, Charlotte, I
    Adlard, Dylan
    Peto, Timothy E. A.
    Posey, James E.
    Crook, Derrick W.
    Fowler, Philip W.
    [J]. JAC-ANTIMICROBIAL RESISTANCE, 2024, 6 (02):