%lrasch_mml: A SAS Macro for Marginal Maximum Likelihood Estimation in Longitudinal Polytomous Rasch Models

被引:0
|
作者
Olsbjerg, Maja [1 ]
Christensen, Karl Bang [1 ]
机构
[1] Univ Copenhagen, DK-1014 Copenhagen K, Denmark
来源
JOURNAL OF STATISTICAL SOFTWARE | 2015年 / 67卷 / CS2期
关键词
polytomous Rasch model; longitudinal Rasch model; marginal maximum likelihood (MML) estimation; item parameter drift; response dependence; SAS macro; ITEM PARAMETER DRIFT; RESPONSE THEORY; DEPENDENCE; PROGRAM; TIME; LIFE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Item response theory models are often applied when a number items are used to measure a unidimensional latent variable. Originally proposed and used within educational research, they are also used when focus is on physical functioning or psychological wellbeing. Modern applications often need more general models, typically models for multidimensional latent variables or longitudinal models for repeated measurements. This paper describes a SAS macro that fits two-dimensional polytomous Rasch models using a specification of the model that is sufficiently flexible to accommodate longitudinal Rasch models. The macro estimates item parameters using marginal maximum likelihood estimation. A graphical presentation of item characteristic curves is included.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 32 条