Marginal maximum likelihood estimation of conditional autoregressive models with missing data

被引:1
|
作者
Suesse, Thomas [1 ]
Zammit-Mangion, Andrew [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia
来源
STAT | 2019年 / 8卷 / 01期
基金
澳大利亚研究理事会;
关键词
CAR model; EM algorithm; incomplete data; spatial statistics; STATISTICAL-ANALYSIS;
D O I
10.1002/sta4.226
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Maximum likelihood (ML) estimation of spatial autocorrelation models is well established for the case where each node in the graph is directly observed. When one or more nodes are not observed, the user has a variety of computational tools at her or his disposal ranging from the expectation-maximization algorithm, which has become a standard for missing-data problems, to marginal likelihood estimation methods and to fully Bayesian approaches. In this article, we give a comprehensive overview of likelihood-based computational frameworks for parameter estimation of the conditional autoregressive model, and we establish connections with several algorithms in the literature that are iterative and often computationally suboptimal. We show that a vanilla marginal ML approach, which we provide computational details for, is still generally orders of magnitude faster than the iterative approaches, even on large data sets and especially so when the number of unobserved units is relatively large.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Marginal maximum likelihood estimation of SAR models with missing data
    Suesse, Thomas
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 120 : 98 - 110
  • [2] Quasi-maximum likelihood estimation of conditional autoregressive Wishart models
    Asai, Manabu
    So, Mike K. P.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (03) : 271 - 294
  • [3] MAXIMUM-LIKELIHOOD ESTIMATION OF AUTOREGRESSIVE MODELS WITH CONDITIONAL INDEPENDENCE CONSTRAINTS
    Songsiri, Jitkomut
    Dahl, Joachim
    Vandenberghe, Lieven
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1701 - +
  • [4] Maximum likelihood estimation for dynamic factor models with missing data
    Jungbacker, B.
    Koopman, S. J.
    van der Wel, M.
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2011, 35 (08): : 1358 - 1368
  • [5] Maximum likelihood estimation for generalized conditionally autoregressive models of spatial data
    Kyung, M.
    Ghosh, S. K.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (03) : 339 - 353
  • [6] Maximum likelihood estimation for generalized conditionally autoregressive models of spatial data
    M. Kyung
    S. K. Ghosh
    [J]. Journal of the Korean Statistical Society, 2014, 43 : 339 - 353
  • [7] Maximum likelihood parameter estimation algorithm for controlled autoregressive autoregressive models
    Wang, Wei
    Li, Junhong
    Ding, Ruifeng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (16) : 3458 - 3467
  • [8] Maximum likelihood estimation for α-stable double autoregressive models
    Li, Dong
    Tao, Yuxin
    Yang, Yaxing
    Zhang, Rongmao
    [J]. JOURNAL OF ECONOMETRICS, 2023, 236 (01)
  • [9] Maximum likelihood estimation for directional conditionally autoregressive models
    Kyung, M.
    Ghosh, S. K.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3160 - 3179
  • [10] Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity
    Meitz, Mika
    Saikkonen, Pentti
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 : 227 - 255