Sim2Real for Soft Robotic Fish via Differentiable Simulation

被引:4
|
作者
Zhang, John Z. [1 ,2 ]
Zhang, Yu [1 ]
Ma, Pingchuan [3 ,4 ]
Nava, Elvis [1 ]
Du, Tao [3 ,4 ]
Arm, Philip [1 ]
Matusik, Wojciech [3 ,4 ]
Katzschmann, Robert K. [1 ,5 ]
机构
[1] Swiss Fed Inst Technol, Soft Robot Lab, Zurich, Switzerland
[2] MIT, Mech Engn, Cambridge, MA 02139 USA
[3] MIT, Comp Sci, Cambridge, MA 02139 USA
[4] MIT, AI Lab, Cambridge, MA 02139 USA
[5] Swiss Fed Inst Technol, ETH AI Ctr, Zurich, Switzerland
关键词
D O I
10.1109/IROS47612.2022.9981338
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate simulation of soft mechanisms under dynamic actuation is critical for the design of soft robots. We address this gap with our differentiable simulation tool by learning the material parameters of our soft robotic fish. On the example of a soft robotic fish, we demonstrate an experimentally-verified, fast optimization pipeline for learning the material parameters from quasi-static data via differentiable simulation and apply it to the prediction of dynamic performance. Our method identifies physically plausible Young's moduli for various soft silicone elastomers and stiff acetal copolymers used in creation of our three different robotic fish tail designs. We show that our method is compatible with varying internal geometry of the actuators, such as the number of hollow cavities. Our framework allows high fidelity prediction of dynamic behavior for composite bi-morph bending structures in real hardware to millimeter-accuracy and within 3% error normalized to actuator length. We provide a differentiable and robust estimate of the thrust force using a neural network thrust predictor; this estimate allows for accurate modeling of our experimental setup measuring bollard pull. This work presents a prototypical hardware and simulation problem solved using our differentiable framework; the framework can be applied to higher dimensional parameter inference, learning control policies, and computational design due to its differentiable character.
引用
收藏
页码:12598 / 12605
页数:8
相关论文
共 50 条
  • [41] Feature semantic space-based sim2real decision model
    Xiao, Wenwen
    Luo, Xiangfeng
    Xie, Shaorong
    APPLIED INTELLIGENCE, 2023, 53 (05) : 4890 - 4906
  • [42] Adaptability Preserving Domain Decomposition for Stabilizing Sim2Real Reinforcement Learning
    Gao, Haichuan
    Yang, Zhile
    Su, Xin
    Tan, Tian
    Chen, Feng
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 4403 - 4410
  • [43] Sim2Real in Endoscopy Segmentation with a Novel Structure Aware Image Translation
    Tomasini, Clara
    Riazuelo, Luis
    Murillo, Ana C.
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2024, 2025, 15187 : 89 - 101
  • [44] DeepRacer: Autonomous Racing Platform for Experimentation with Sim2Real Reinforcement Learning
    Balaji, Bharathan
    Mallya, Sunil
    Genc, Sahika
    Gupta, Saurabh
    Dirac, Leo
    Khare, Vineet
    Roy, Gourav
    Sun, Tao
    Tao, Yunzhe
    Townsend, Brian
    Calleja, Eddie
    Muralidhara, Sunil
    Karuppasamy, Dhanasekar
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 2746 - 2754
  • [45] Towards Sim2Real Transfer of Autonomy Algorithms using AutoDRIVE Ecosystem
    Samak, Chinmay
    Samak, Tanmay
    Krovi, Venkat
    IFAC PAPERSONLINE, 2023, 56 (03): : 277 - 282
  • [46] Sim2real for Autonomous Vehicle Control using Executable Digital Twin
    Allamaa, Jean Pierre
    Patrinos, Panagiotis
    Van der Auweraer, Herman
    Son, Tong Duy
    IFAC PAPERSONLINE, 2022, 55 (24): : 385 - 391
  • [47] Domain Randomization for Sim2real Transfer of Automatically Generated Grasping Datasets
    Huber, Johann
    Helenon, Francois
    Watrelot, Hippolyte
    Ben Amar, Faiz
    Doncieux, Stephane
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 4112 - 4118
  • [48] Real2Sim2Real Transfer for Control of Cable-driven Robots via a Differentiable Physics Engine
    Wang, Kun
    Johnson, William R., III
    Lu, Shiyang
    Huang, Xiaonan
    Booth, Joran
    Kramer-Bottiglio, Rebecca
    Aanjaneya, Mridul
    Bekris, Kostas
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 2534 - 2541
  • [49] Parallel Learning: Overview and Perspective for Computational Learning Across Syn2Real and Sim2Real
    Miao, Qinghai
    Lv, Yisheng
    Huang, Min
    Wang, Xiao
    Wang, Fei-Yue
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (03) : 603 - 631
  • [50] Parallel Learning: Overview and Perspective for Computational Learning Across Syn2Real and Sim2Real
    Qinghai Miao
    Yisheng Lv
    Min Huang
    Xiao Wang
    Fei-Yue Wang
    IEEE/CAA Journal of Automatica Sinica, 2023, 10 (03) : 603 - 631