Sim2Real for Soft Robotic Fish via Differentiable Simulation

被引:4
|
作者
Zhang, John Z. [1 ,2 ]
Zhang, Yu [1 ]
Ma, Pingchuan [3 ,4 ]
Nava, Elvis [1 ]
Du, Tao [3 ,4 ]
Arm, Philip [1 ]
Matusik, Wojciech [3 ,4 ]
Katzschmann, Robert K. [1 ,5 ]
机构
[1] Swiss Fed Inst Technol, Soft Robot Lab, Zurich, Switzerland
[2] MIT, Mech Engn, Cambridge, MA 02139 USA
[3] MIT, Comp Sci, Cambridge, MA 02139 USA
[4] MIT, AI Lab, Cambridge, MA 02139 USA
[5] Swiss Fed Inst Technol, ETH AI Ctr, Zurich, Switzerland
关键词
D O I
10.1109/IROS47612.2022.9981338
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate simulation of soft mechanisms under dynamic actuation is critical for the design of soft robots. We address this gap with our differentiable simulation tool by learning the material parameters of our soft robotic fish. On the example of a soft robotic fish, we demonstrate an experimentally-verified, fast optimization pipeline for learning the material parameters from quasi-static data via differentiable simulation and apply it to the prediction of dynamic performance. Our method identifies physically plausible Young's moduli for various soft silicone elastomers and stiff acetal copolymers used in creation of our three different robotic fish tail designs. We show that our method is compatible with varying internal geometry of the actuators, such as the number of hollow cavities. Our framework allows high fidelity prediction of dynamic behavior for composite bi-morph bending structures in real hardware to millimeter-accuracy and within 3% error normalized to actuator length. We provide a differentiable and robust estimate of the thrust force using a neural network thrust predictor; this estimate allows for accurate modeling of our experimental setup measuring bollard pull. This work presents a prototypical hardware and simulation problem solved using our differentiable framework; the framework can be applied to higher dimensional parameter inference, learning control policies, and computational design due to its differentiable character.
引用
收藏
页码:12598 / 12605
页数:8
相关论文
共 50 条
  • [21] Neural Neural Textures Make Sim2Real Consistent
    Burgert, Ryan
    Shang, Jinghuan
    Li, Xiang
    Ryoo, Michael S.
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 2215 - 2225
  • [22] Reducing Tactile Sim2Real Domain Gaps via Deep Texture Generation Networks
    Jianu, Tudor
    Gomes, Daniel Fernandes
    Luo, Shan
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8305 - 8311
  • [23] Generation of GelSight Tactile Images for Sim2Real Learning
    Gomes, Daniel Fernandes
    Paoletti, Paolo
    Luo, Shan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 4177 - 4184
  • [24] Sim2real flower detection towards automated Calendula harvesting
    Vierbergen, Wout
    Willekens, Axel
    Dekeyser, Donald
    Cool, Simon
    Wyffels, Francis
    BIOSYSTEMS ENGINEERING, 2023, 234 : 125 - 139
  • [25] How Simulation Helps Autonomous Driving: A Survey of Sim2real, Digital Twins, and Parallel Intelligence
    Hu, Xuemin
    Li, Shen
    Huang, Tingyu
    Tang, Bo
    Huai, Rouxing
    Chen, Long
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 593 - 612
  • [26] OBJECTFOLDER 2.0: A Multisensory Object Dataset for Sim2Real Transfer
    Gao, Ruohan
    Si, Zilin
    Chang, Yen-Yu
    Clarke, Samuel
    Bohg, Jeannette
    Li Fei-Fei
    Yuan, Wenzhen
    Wu, Jiajun
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10588 - 10598
  • [27] Learning to Augment Synthetic Images for Sim2Real Policy Transfer
    Pashevich, Alexander
    Strudel, Robin
    Kalevatykh, Igor
    Laptev, Ivan
    Schmid, Cordelia
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 2651 - 2657
  • [28] Exploring Generative AI for Sim2Real in Driving Data Synthesis
    Zhao, Haonan
    Wang, Yiting
    Bashford-Rogers, Thomas
    Donzella, Valentina
    Debattista, Kurt
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 3071 - 3077
  • [29] Sim2Real Object-Centric Keypoint Detection and Description
    Zhong, Chengliang
    Yang, Chao
    Sun, Fuchun
    Qi, Jinshan
    Mu, Xiaodong
    Liu, Huaping
    Huang, Wenbing
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 5440 - 5449
  • [30] Learn to Differ: Sim2Real Small Defection Segmentation Network
    Chen, Zexi
    Huang, Zheyuan
    Yu, Hongxiang
    Zhou, Zhongxiang
    Wang, Yunkai
    Xu, Xuecheng
    Tan, Qimeng
    Wang, Yue
    Xiong, Rong
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 1070 - 1077