Integrability of one-dimensional Lindbladians from operator-space fragmentation

被引:37
|
作者
Essler, Fabian H. L. [1 ]
Piroli, Lorenzo [2 ,3 ]
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany
基金
英国工程与自然科学研究理事会;
关键词
BETHE-ANSATZ SOLUTION; XXZ; CHAINS; MODELS; STATES;
D O I
10.1103/PhysRevE.102.062210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce families of one-dimensional Lindblad equations describing open many-particle quantum systems that are exactly solvable in the following sense: (i) The space of operators splits into exponentially many (in system size) subspaces that are left invariant under the dissipative evolution; (ii) the time evolution of the density matrix on each invariant subspace is described by an integrable Hamiltonian. The prototypical example is the quantum version of the asymmetric simple exclusion process (ASEP) which we analyze in some detail. We show that in each invariant subspace the dynamics is described in terms of an integrable spin-1/2 XXZ Heisenberg chain with either open or twisted boundary conditions. We further demonstrate that Lindbladians featuring integrable operator-space fragmentation can be found in spin chains with arbitrary local physical dimensions.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Ergodic theory for the one-dimensional Jacobi operator
    Nunez, C
    Obaya, R
    STUDIA MATHEMATICA, 1995, 117 (02) : 149 - 171
  • [22] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Daniel M. Elton
    Michael Levitin
    Iosif Polterovich
    Annales Henri Poincaré, 2014, 15 : 2321 - 2377
  • [23] Ladder operator for the one-dimensional Hubbard model
    Links, J
    Zhou, HQ
    McKenzie, RH
    Gould, MD
    PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5096 - 5099
  • [24] ON EFFECTIVE MASS OF ONE-DIMENSIONAL HILL OPERATOR
    FIRSOVA, NE
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1979, (02): : 13 - 18
  • [25] One-dimensional Schrödinger operator with δ-interactions
    A. S. Kostenko
    M. M. Malamud
    Functional Analysis and Its Applications, 2010, 44 : 151 - 155
  • [26] INTEGRABILITY OF THE DERIVATIVE OF SOLUTIONS TO A SINGULAR ONE-DIMENSIONAL PARABOLIC PROBLEM
    Nakayasu, Atsushi
    Rybka, Piotr
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 52 (01) : 239 - 257
  • [27] The one-dimensional Schrodinger operator with point δ- and δ′-interactions
    Goloshchapova, N. I.
    Oridoroga, L. L.
    MATHEMATICAL NOTES, 2008, 84 (1-2) : 125 - 129
  • [28] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Elton, Daniel M.
    Levitin, Michael
    Polterovich, Iosif
    ANNALES HENRI POINCARE, 2014, 15 (12): : 2321 - 2377
  • [29] ONE-DIMENSIONAL SCHRODINGER OPERATOR WITH ACCELERATING POTENTIAL
    BUSLAEVA, MV
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1984, 18 (01) : 53 - 55
  • [30] The eigenvalue problem of one-dimensional Dirac operator
    Jacek Karwowski
    Artur Ishkhanyan
    Andrzej Poszwa
    Theoretical Chemistry Accounts, 2020, 139