Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations

被引:18
|
作者
Lu, Xin [1 ]
Fang, Zhi-Wei [1 ]
Sun, Hai-Wei [2 ]
机构
[1] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
[2] Univ Macau, Dept Math, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Riesz space fractional diffusion equations; Shifted Grunwald discretization; Symmetric positive definite Toeplitz matrix; Sine-transform-based splitting preconditioner; GMRES method; FINITE-DIFFERENCE APPROXIMATIONS; CIRCULANT PRECONDITIONER; SCHEME;
D O I
10.1007/s12190-020-01454-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the sine-transform-based splitting preconditioning technique for the linear systems arising in the numerical discretization of time-dependent one dimensional and two dimensional Riesz space fractional diffusion equations. Those linear systems are Toeplitz-like. By making use of diagonal-plus-Toeplitz splitting iteration technique, a sine-transform-based splitting preconditioner is proposed to accelerate the convergence rate efficiently when the Krylov subspace method is implemented. Theoretically, we prove that the spectrum of the preconditioned matrix of the proposed method is clustering around 1. In practical computations, by the fast sine transform the computational complexity at each time level can be done in O(n log n) operations where n is the matrix size. Numerical examples are presented to illustrate the effectiveness of the proposed algorithm.
引用
收藏
页码:673 / 700
页数:28
相关论文
共 50 条
  • [41] A generalization of trigonometric transform splitting methods for spatial fractional diffusion equations
    Shao, Xin-Hui
    Zhang, Zhen-Duo
    Shen, Hai-Long
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (06) : 1845 - 1856
  • [42] Midpoint splitting methods for nonlinear space fractional diffusion equations
    Liu, Hongliang
    Tan, Tan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 446
  • [43] A space-time spectral collocation method for the 2-dimensional nonlinear Riesz space fractional diffusion equations
    Li, Hui
    Jiang, Wei
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) : 6130 - 6144
  • [44] The Identification of the Time-Dependent Source Term in Time-Fractional Diffusion-Wave Equations
    Liao, Kai Fang
    Li, Yu Shan
    Wei, Ting
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (02) : 330 - 354
  • [45] On Time-Fractional Diffusion Equations with Space-Dependent Variable Order
    Kian, Yavar
    Soccorsi, Eric
    Yamamoto, Masahiro
    [J]. ANNALES HENRI POINCARE, 2018, 19 (12): : 3855 - 3881
  • [46] On Time-Fractional Diffusion Equations with Space-Dependent Variable Order
    Yavar Kian
    Eric Soccorsi
    Masahiro Yamamoto
    [J]. Annales Henri Poincaré, 2018, 19 : 3855 - 3881
  • [47] Time-Dependent Fractional Diffusion and Friction Functions for Anomalous Diffusion
    Bao, Jing-Dong
    [J]. FRONTIERS IN PHYSICS, 2021, 9
  • [48] Initial-boundary Value Problems for Fractional Diffusion Equations with Time-Dependent Coefficients
    Adam Kubica
    Masahiro Yamamoto
    [J]. Fractional Calculus and Applied Analysis, 2018, 21 : 276 - 311
  • [49] Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method
    Zhuang, P.
    Gu, Y. T.
    Liu, F.
    Turner, I.
    Yarlagadda, P. K. D. V.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 88 (13) : 1346 - 1362
  • [50] INITIAL-BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFUSION EQUATIONS WITH TIME-DEPENDENT COEFFICIENTS
    Kubica, Adam
    Yamamoto, Masahiro
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (02) : 276 - 311