On Time-Fractional Diffusion Equations with Space-Dependent Variable Order

被引:43
|
作者
Kian, Yavar [1 ]
Soccorsi, Eric [1 ]
Yamamoto, Masahiro [2 ,3 ]
机构
[1] Aix Marseille Univ, Univ Toulon, CNRS, CPT, Marseille, France
[2] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[3] RUDN Univ, Peoples Friendship Univ Russia, 6 Miklukho Maklaya St, Moscow 117198, Russia
来源
ANNALES HENRI POINCARE | 2018年 / 19卷 / 12期
基金
日本学术振兴会;
关键词
BOUNDARY-VALUE-PROBLEMS; ANOMALOUS DIFFUSION; UNIQUENESS; CALCULUS;
D O I
10.1007/s00023-018-0734-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with mathematical problems related to space-dependent anomalous diffusion processes. Namely, we investigate diffusion equations with time-fractional derivatives of space-dependent variable order. We establish that variable-order time-fractional Cauchy problems admit a unique weak solution and prove that the space-dependent variable-order coefficient is uniquely determined by the knowledge of a suitable time sequence of partial initial-boundary maps.
引用
收藏
页码:3855 / 3881
页数:27
相关论文
共 50 条